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ABSTRACT 

Many catalysts are today prepared by impregnation (also called incipient wetness or dry 

impregnation) in which nominal amounts of metals are placed into the amount of solution 

just necessary to fill the pore volume of the support material. While dry impregnation (DI) 

is simple and the amounts of metals easily controlled, no attention is paid to metal-

support or metal-metal interaction. When DI-deposited metal precursors are reduced, the 

particles tend to be large in size and there is often ppor contact between two metals in a 

bimetallic system. In this work we demonstrate the application of “strong electrostatic 

adsorption” (SEA) for the rational synthesis of inorganic metallic catalysts with high 

metal dispersion and intimate metal1-metal2 interaction of bimetallic catalysts. For 

monometallic catalysts, we suggested charge-enhanced dry impregnation (CEDI) which 

can produce highly dispersed single metal catalysts by inducing electrostatic interaction 

between dissolved precursor and support while using a simple DI method.   

Two variations will be demonstrated that produce bimetallic catalysts: using simultaneous 

or co-SEA, two metal precursors are simultaneously placed in solution and 

electrostatically adsorbed onto a support in a mixed monolayer of precursors. This 

produces homogeneously alloyed bimetallic particles when the precursor layer is reduced. 

On the other hand, SEA can be applied in a two step sequence (seq-SEA); the core metal 

precursor is electrostatically adsorbed onto the support and oxidized, and then the shell 

metal precursor is selectively adsorbed onto the core metal oxide and not onto the support. 
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A core-shell morphology persists after the reduction step. 

Pt/Pd bimetallic catalysts supported by oxidized and unoxidized carbon, alumina and 

silica have been synthesized by co-SEA. Seq-SEA has been used to produce Pd cores/Pt 

shell (Pd@Pt) on silica and alumina, and Pt cores/Pd shell (Pt@Pd) on alumina. These 

are compared with DI-prepared catalysts of the same nominal composition. Seq-SEA can 

also produce well-dispersed uniform Pd@Au catalysts for Benzyl alcohol oxidation. 

Catalysts synthesized using this method, have 10 times the activity of comparable DI-

prepared catalysts, while using 25 times less gold. The materials were characterized by 

powder XRD, STEM, EDXS nanoparticle mapping, and TPR. Au/Pd/C catalysts were 

evaluated by benzyl alcohol oxidation reaction at Cardiff University, England.  
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CHAPTER 1 

INTRODUCTION 

Catalytic processes are of great importance to the economy of many industrialized 

nations. The majority of products and goods we use in daily life contain compounds that 

have at some point in their production life cycle been in contact with a catalyst. Seventy 

percent of all commercial chemical processes involve some catalytic application [1]. A 

few of the more common applications of catalytic processes include water treatment, air 

pollution control (for example, automotive exhaust catalysis) and many processes in the 

petroleum industry. The common methods of industrial catalyst preparation are to a large 

degree based on experience rather than fundamental understanding of the processes 

involved, and are oftentimes referred to as an art. It is the primary objective of this study 

to help build a fundamental understanding of supported metal catalyst preparation, in 

other words, to turn the art of catalyst preparation into a science. 

1.1 PREPARATION OF SUPPORTED METAL CATALYSTS 

     There are a multitude of catalyst preparation methods, such as impregnation, co-

precipitation, deposition-precipitation, sol-gel, chemical vapor deposition, etc. Among all 

these catalyst preparation methods, impregnation is the simplest, least expensive, and 

most prevalent method, in which a high surface area oxide or carbon support is contacted 

with a liquid solution containing precursor dissolved metal ions or coordination 

complexes. After impregnation, various drying and pretreatment steps can be employed 
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to remove the metal ligands and to reduce the metal to its catalytically active metallic 

state. About 30% of literatures of 3 biggest catalysis research centers in USA still used an 

impregnation method for within the last 5 years. 

     Impregnation methods can further be divided into dry impregnation and wet 

impregnation. Dry impregnation is often termed “incipient wetness impregnation (IWI)” 

or “pore filling”. In wet impregnation (WI), the support material is contacted with an 

excess of a solution containing the metal precursor, the metal precursor species may or 

may not diffuse into the pore system of the solid during the equilibration period, in only 

some cases, leading to homogeneous distribution of the metal throughout the support. In 

contrast, in the incipient wetness impregnation technique an amount of solution that 

corresponds to the total pore volume of the support material is mixed with support and 

capillary action provides the driving force for the imbibition of the impregnation solution 

into the porous solid. However, a non-uniform metal precursor distribution may develop 

as the metal complex remains in solution and is carried to the surface during drying. In 

neither IWI nor WI is any provision made for interaction of the metal precursor with the 

support surface. 

1.2 STRONG ELECTROSTATIC ADSORPTION 

     In the above methods, pH is generally not controlled, and the final pH of the 

impregnation solution can vary quite dramatically. If the metal solution is adjusted before 

contact, for example by adding acid or base so as to promote metal sorption onto the 

support, the concept of “strong electrostatic adsorption (SEA) method” can be introduced. 

In this case the interaction between the charged metal complex and the support is strong 

electrostatic adsorption. 
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     The electrostatic mechanism had been postulated for catalyst preparation in the 

land mark paper of Brunelle [2] and the pioneering work of Schwarz [3-6]. As depicted in 

Figure 1.1, hydroxyl groups on the surface of an oxide can be protonated or de-

protonated depending on the pH of the contacting solution. The pH at which the hydroxyl 

groups are neutral and no precursor-support interaction occurs is termed the point of zero 

charge (PZC) [7]. Below the PZC, the hydroxyl groups protonate and become positively 

charged, and the surface can adsorb anionic metal complexes such as PHC ([PtCl6]
2-

). 

Above the PZC, the hydroxyl groups de-protonate and become negatively charged, and 

the cations such as PTA ([(NH3)4Pt]
2+

) can be strongly adsorbed. In both case, the metal 

complex deposit onto the surface via strong electrostatic adsorption (SEA). 

 

Figure 1.1 Electrostatic adsorption mechanism 

     The first step in the SEA method is to determine the PZC of the support, which is 

easily determined by measuring final pH versus initial pH at high surface loading. 

Surface loading (SL) is defined at the amount of support surface per liter of solution, and 

can be calculated by equation 1.  
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Surface loading (m
2
/L) = 

Surface Area of support (
𝑚2

g
)∗grams of support(g)

Volume of Precursor Solution (L) 
   (eqn 1) 

The second step of SEA is to perform an uptake-pH survey to determine the pH of 

strongest interaction. The overriding hypothesis of the SEA approach is that with metals, 

the simplest and most effective way to synthesize highly dispersed metal particles is to 

achieve a high dispersion of the metal precursors on the support during impregnation. 

Once strongly adsorbed, the idea is to perform the pretreatment steps of calcinations or 

reduction, often referred to in industry as catalyst finishing, in such a way that the 

monolayer morphology of the precursor is maintained as the metal is reduced, such that 

high metal dispersion is achieved [8,9]. 

     Our research group has proposed a parameter-free Revised Physical Adsorption 

Model (RPA) based on a purely physical adsorption scheme, as opposed to a chemical 

mechanism [11]. The pH shift model was put forward by Park and Regalbuto [7], who 

were the first to simulate the pH shifts in bulk solution which occur when aqueous 

solutions are contacted with various amounts of oxides. This model was proposed as a 

simple and novel technique to determine the PZC of oxides. This PZC measurement 

method differs from traditional titration experiments in that the initial solutions of 

varying pH are contacted with oxides at various surface loadings. The equilibrium pH of 

the solution is then measured. Thus the model predicts the pH buffering effects of oxides 

at specific surface loadings. Figure 1.2 illustrates the pH shift and adsorption calculations 

for the uptake of PHC on alumina as a function of surface loading, which  
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Figure 1.2 Simulation of SEA at high surface loadings (a) pH shift simulation, (b) 

uptake-pH simulation [20] 

is the area of support per volume of solution. 

     From the pH shift plot in figure 1.2a, the plateaus of final pH are seen to widen at 

higher surface loading. Uptake curves figure in 1.2b, at all SLs, show a typical 

characteristic of SEA, being a volcano shape in metal uptake. An optimal pH exists at 

which point has the strongest electrostatic attraction. This occurs far enough from the 

PZC so that the surface is strongly charged. The maximum obtainable uptake decreases at 

the highest SL due to the higher concentration of Pt, which must be employed to achieve 

the same surface density. It also decreases at extremely acidic (and basic) pH when the 

ionic concentration of the solution is high which causes the adsorption equilibrium 

constant to become very small due to electric double layer screening. 

     The RPA model shows different adsorption survey curve depended on different 

PZC support materials (Figure1.3). 
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Figure 1.3 RPA simulation of Pt adsorption over supports with different PZC [10] 

Supports with very low PZC have a broad PTA adsorption plateau from the PZC to pH12 

since it has electrostatic potential just after the PZC [11]. Maximum adsorption density of 

PHC is double that of PTA because PHC is assumed to have one hydration sheath, and 

PTA two.  

1.3 EXTENSION OF THE SEA APPROACH TO BIMETALLIC CATALYSTS 

     The SEA method can be applied to the synthesis of bimetallic catalysts by 

exploiting the difference in surface charging parameters of a composite surface. If a low 

PZC support is supporting a high PZC oxide, in the acidic pH range the density of the 

protonated hydroxyl groups on the high PZC oxide will be greater than that of the low 

PZC oxide. The first metal might itself may be deposited by SEA in well-dispersed form 

by precursors such as cationic cobalt hexaammine on silica. Next the second metal 

complex, such as [PtCl6]
2
, should selectively adsorb to the cobalt oxide rather than silica 

(figure 1.4). 
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Figure 1.4 Schematic of proposed selective adsorption 

     Pioneering research began with Schwarz et al. [3-6] and their attempt to selectively 

adsorb Co
2+

 or Pd
2+

 onto one of two composite oxides. Unfortunately, their choice in 

using bare metal ions as their precursor introduced problems in that these species tend to 

hydrolyze and precipitate over a wide pH range. This can be circumvented by using metal 

ammine, chloride or oxide coordination complexes as the precursor. These metal 

precursor compounds are generally stable over a broad range of pH and concentration.      

     This work will apply the rational synthesis of single and bimetallic catalysts by 

electrostatic adsorption. In chapter 2, I will demonstrate a hybrid synthesis method we 

have termed “charge-enhanced dry impregnation (CEDI)” as a simple method to prepare 

highly dispersed monometallic Pt catalysts by inducing electrostatic interaction between 

support and metal precursor. Chapter 3 will show my work at Johnson Matthey 

Technology Centre (JMTC) for measurement of PZC of noble metal (NM) oxides and 

adsorption surveys of NM precursors onto NM oxides. Chapter 4 will describe the 

synthesis of several sets of Pt/Pd bimetallic catalysts with oxides or carbon support by 
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simultaneous SEA and sequential SEA. The final chapter will utilize seq-SEA to 

synthesis Au-Pd/carbon catalyst for benzyl alcohol oxidation. 
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CHAPTER 2 

SUPPORTED PLATINUM CATALYSTS PREPARED BY DI AND CEDI 

Dry impregnation (also called pore filling or incipient wetness) is the simplest, least 

expensive, and most prevalent way to prepare supported metal catalysts. In this method a 

desired amount of metal precursor, typically a coordination complex such as platinum 

hexachloride (PHC, [PtCl6]
-2

) or platinum tetraammine (PTA, [(NH3)4Pt]
-2

), is dissolved 

in water and the solution added to an oxide or carbon support in the amount just sufficient 

to fill the pore volume of the support. The thick slurry/paste is dried and then heated in 

oxidizing and/or reducing gases to remove the ligands of the precursor and to reduce the 

metal to its active elemental state. This method requires no filtration, eliminates wasted 

metal and yields a precise metal loading. The most common catalysis metric of metal 

utilization is dispersion: the fraction of metal atoms appearing at the surfaces of metal 

crystallites (and available as catalytically active sites), divided by the total number of 

atoms. Metal nanoparticles one nanometer in diameter have a dispersion of 

approximately 100%; high dispersion is very often the goal of synthesis. 

     In dry impregnations no provision is made for the metal precursor complexes to 

interact with the support surface, and without such interaction, metal complexes 

agglomerate into large particles either before or during reduction. Unlike supported metal 

oxides, which can be easily dispersed on oxide supports by thermal spreading from 

mixtures of bulk oxide powders [12], obtaining high dispersion of supported 



www.manaraa.com

10 

  

metals requires high dispersion of metal precursors. 

     Precursor - support interactions in many common catalyst preparations can be 

envisioned in light of the electrostatic adsorption mechanism [2-6] depicted in figure 1.1. 

Oxide and carbon surfaces terminate in functional groups such as hydroxyls and 

carboxylic acids which can protonate or deprotonate as a function of solution pH. At 

these conditions the surface can electrostatically adsorb precursors of opposite charge; 

anions adsorb over a protonated surface below the PZC, cations over a deprotonated 

surface above the PZC. 

     While it is easy to understand electrostatic adsorption as a function of pH in figure 

1.1, appreciating the extent of proton transfer in dry impregnation is much less intuitive. 

Consider, for example, impregnating a typical alumina with a surface area 200 m
2
/g, pore 

volume 1.0 ml/g and a hydroxyl density of 8 OH/nm
2
, with a pH 3 solution. This is five 

pH units below alumina’s PZC of about 8.5; it may be assumed that the low pH solution 

will protonate the surface and enable adsorption of anions per figure 1.1. The number of 

protons in 1.0 ml (1.0 x 10
-3

 L) of pH 3 (10
-3

 molar) solution is 1.0 x 10
-6

 moles. The 

number of hydroxyl groups on the surface of one gram of alumina support is  

  1 g x 200 m
2
/g x 1018 nm

2
/m

2
 x 8 OH/nm

2
 x 1 mole/(6.02 x 10

23
 OH)  

                                             = 2660 x 10
-6

 moles. 

     With only 1/2660 hydroxyl groups protonated, the surface will be negligibly 

charged. Enough acid in 1.0 ml of solution to protonate all the surface OH groups would 

require a concentration of 2.67 mol H/L, or an initial pH of -0.41. 

     The strong buffering capacity of oxide surfaces at incipient wetness has been 

pointed out in the past [13]; at this condition the final pH of impregnating solution is 
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almost always at the PZC of the surface and no electrostatic metal precursor - support 

interaction occurs unless the impregnation solution is made extremely acidic or basic. 

2.1 EXPERIMENTS 

2.1.1 Catalysts Preparation 

     Oxidized carbon (Darco G-60, BET area: 617 m
2
/g) and SiO2 (BET area: 330 m

2
/g) 

were used as low PZC supports with which platinum tetraammine (PTA, [Pt(NH3)4]Cl2, 

99.9%) was used as the precursor. Sodium tetrachloroplatinate(ll) (PTC, Na2PtCl4 nH2O, 

99.9%) from Aldrich were used as the platinum precursor on the high PZC support, a 

gamma-alumina (BET area: 274 m
2
/g) support.   

     The water accessible pore volume was measured with one gram of oxide and 

deionized water (pH of 5.6). pH measurements at incipient wetness were made with a 

spear tip combination pH probe.  

     DI samples were prepared by adding metal precursor solution for 2 wt% Pt loading. 

The pastes were dried at room temperature in air and then reduced in hydrogen for 1 hr at 

200°C. The same process was used to prepare CEDI samples, with the exception that 

optimal initial pH values were used (as described later). 

2.1.2 Catalysts Characterization 

     BET surface area measurements were obtained using an automated adsorption 

system (ASAP, 2100, Micromeritics). After degassing at 150ºC, the samples were 

transported from degassing port to analysis port and doping with N2 in liquid nitrogen 

pool. Surface area were calculated by the linear relation between P/Po and 1/ [v(P/Po-1)] 

with 8 points from 0~0.35 of P/Po values. 

     Powder X-ray diffraction analysis was performed using a Siemens D5000 
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diffractometer with Cu Kα radiation (λ = 1.5406 Å) operated at 30kV and 40mA, 

operating in Bragg–Brentano geometry. Scans were made in the 10
o
-90

o
 2θ range, with 

step size of 0.02
o
, and 2s exposure at each step. Z-contrast STEM imaging for particle 

size determination in the materials was conducted with a JEOL JEM-2010F FasTEM 

with a probe size of 0.14-0.2 nm. The catalyst samples were sonicated in isopropanol for 

15 min and the slurry was deposited onto a carbon-coated copper grid (200 mesh, Cu 

PK/100), supplied by SPI, USA. The applied voltage was 200 kV and extracting voltage 

of 4500 V. Approximately 500 particles were counted for size distribution. Carbon 

monoxide chemisorption was used to determine the accessible Pt surface using a 

Micromeritics ASAP 2020 instrument. The samples were first dried at 110 °C in a He 

flow for 30min and subsequently reduced in a 50% H2/He flow at 350 °C for 2 h (ramp = 

10°C/min).  

     Carbon monoxide chemisorptions was used to determine the accessible Pt surface 

(Micromeritics ASAP 2020). The samples were first dried at 110 °C in a He flow for 

30min and subsequently reduced in a 50% H2/He flow at 350 °C for 2 h (ramp = 

10°C/min). 

2.2 RESULT 

     The amount of acid or base needed to sufficiently charge a surface at incipient 

wetness, and the effect of the high concentrations of acid and base on metal precursor 

uptake, can be estimated with the revised physical adsorption (RPA) model [7]. 

     The simulation for PHC adsorption over alumina is given in figures 2.1a (potential) 

and 1b (uptake) at various values of a parameter we call “surface loading,” with units 

m
2
/L. 
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a) b)  

c) d)  

Figure 2.1 Simulation of SEA at high surface loadings; (a) alumina surface potential (b) 

PHC uptake (PHC adsorption, PZC 8.5, dpk=5 and Ns= 8 OH/nm
2
) (c) silica surface 

potential (d) uptake (PTA adsorption, PZC= 4.8, dpk=8 and Ns= 8 OH/nm
2
) [14] 

 

     For any value of surface loading, surface potential and metal uptake are zero at the 

PZC of 8.5. As the pH decreases, uptake initially increases as the surface potential rises, 

but at the pH extreme, high ionic strength drastically diminishes the adsorption 

equilibrium constant by electric screening [3-5]. Thus metal uptake is a volcano-shaped 

curve and there exists an optimal pH at which adsorption is strongest. An analogous set of 

potential and uptake curves are seen for PTA uptake over silica in figures 2.1c and 1d. 

     Now we consider the effect of surface loading. Thin slurries and correspondingly 

low surface loadings are convenient for laboratory studies, as low loadings minimize the 

pH shifts from buffering and make it easy to sample the liquid phase for pH and metal 

concentration. Most of our studies of “strong electrostatic adsorption” (SEA) [15-19] 

have employed surface loadings of 500 - 1000 m
2
/L. 
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     There is no reason why electrostatic SEA cannot be employed at higher surface 

loadings with incipient wetness representing the highest obtainable surface loading for a 

particular solid. In figure 2.1 it is seen that for both alumina and silica, surface potential 

and metal uptake decrease as surface loading is increased. This decrease is again the 

result of high ionic strength caused by the balancing electrolytes from the higher 

concentrations of metal and acid or base. Nonetheless, the simulations predict a final pH 

at which electrostatic adsorption is strongest at high surface loading.  

     The new method is illustrated in figure 2.2. SEA has traditionally featured the thin 

slurry/low surface loading depicted in figure 2.2, with pH controlled to the optimal value. 

(The more general case of “wet impregnation” would be that employing excess solution, 

but without controlling pH; solution pH still tends greatly to the PZC [13].) 

 

Figure 2.2 Illustration of a)SEA, b) DI, and c) CEDI impregnations. 

     Dry impregnation has no excess solution and the pH is almost always at the PZC 

(figure 2.2b). However, with enough acid or base, final pH can be taken to the optimal 

value. We call this “charge-enhanced dry impregnation” (CEDI) (figure 2.2c).       

 

  Dry Impregnation 
Pore Filling 

 

CEDI 
Pore Filling 

 

SEA 
 Excess Liquid 

 

 

pH PZC 
 

pH pHopt 
 

pH pHopt 
 

Excess Liquid 
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     We have demonstrated CEDI for improving metal dispersion with three catalyst 

supports and two metal complexes. Table 2.1 gives the properties of these materials. For 

the oxidized carbon and silica surfaces that have low PZC, cationic PTA was chosen as 

the metal precursor, and for alumina, which has a high PZC, the anionic PTC complex 

was used.   

Table 2.1 Properties of Supports 

 

Supports 

BET Surface 

area (m
2
/g) 

Pore Volume 

(ml/g) 

PZC 

Optimal pH 

(Final pH) 

Carbon 617 1.46 1.5 11 

SiO2 330 0.55 3.9 11 

Al2O3 274 1.85 8.3 3 

 

     STEM analysis was performed on the supported 2wt% Pt catalysts after 

impregnation, drying, and reduction at 200
o
C for 1 hour at a ramp rate of 5

o
C/min. Figure 

2.3 shows the respective Z contrast STEM images for synthesis by DI and CEDI and 

particle sizes with standard deviations are given in table 2.2. The average size of 

nanoparticles prepared by CEDI are 1.5 nm for carbon, 1.8 for silica, and 2.9 for alumina, 

and are much smaller particles than those prepared by DI, 10.3, 10, and 10 nm, 

respectively. 

     Particle size was also characterized by powder XRD; these results are shown in 

figures2.4a, b, and c for carbon, silica and alumina, respectively. The upper diffractogram 

of each set is the pure support. Peaks at 21, 22.5 and 27
o 
2 in figure 2.4a can be assigned  
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  a)  b)  

      c)  d)  

  e)   f)  

Figure 2.3 STEM image of Pt catalysts after reduced at 200
o
C (a) Pt/C DI  

(b) Pt/C CEDI (c) Pt/SiO2 DI (d) Pt/SiO2 CEDI (e) Pt/Al2O3 DI (f) Pt/Al2O3 CEDI 

 

to graphite. After reduction, the Pt on carbon by DI clearly shows fcc Pt with peaks at at 

39.7
o
 2 (111), 46.2

o
 (200), and 67.4

o
 (220). For the CEDI sample, the small peak at 

33.02
o
 2 suggests the presence of PtO2 (from the (110) plane). It is known that the 
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smallest Pt nanoparticles spontaneously oxidize [94]. The absence of significant Pt peak 

intensity results from small average particle size. In figure 2.4b, on silica the DI sample 

again clearly exhibits metallic Pt, and again in the CEDI sample only PtO2 peaks of lower 

intensity are seen.  

a) 

 

 

 

 

b) 

 

 

 

 

c) 

 

 

 

 

Figure 2.4 XRD pattern of a) Pt/C, b) Pt/SiO2 and c) Pt/Al2O3, which prepared by DI and 

CEDI reduced at 200 
o
C 

     In figure2.4c, fcc Pt peaks overlap the Al2O3 support peaks but the Pt(111) peak at 

39.7
o
 2 for the DI sample is still noticeable, while no Pt peaks are observed for the 

CEDI sample. Pt particle sizes estimated from the Scherrer equation are given in Table 
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2.2 for comparison with the STEM results, especially the XRD value for the Pt/Al2O3 

sample is rough given the poor signal/noisy ratio. 

Table 2.2 Final pH and particle size analysis for DI and CEDI samples 

 

 Pt/C 

DI 

Pt/C 

CEDI 

Pt/SiO2 

DI 

Pt/SiO2 

CEDI 

Pt/Al2O3 

DI 

Pt/Al2O3 

CEDI 

pHfinal (1.5) 11.0 (3.9) 11.0 (8.3) 3.0 

XRD
a
 14.1 <3 7.7 <3 7.9 <3 

STEM
a
 10 1.8 7.5 1.5 11.2 2.9 

STEM
b
 10% 56% 9% 34% 13% 67% 

CO 

Chem.
c
 

2% 21% 7.6% 71% 32% 56% 

a
 reduced at 200°C, particle size (nm)    

b
 dispersion based on STEM analysis                     

c
 reduced at 350°C, dispersion based on CO chemisoprtion 

 

     Results of CO chemisorption are also included in table 2.2. A reduction of 350°C 

was employed so that for the alumina sample all residual chloride would be removed. The 

CEDI samples for each support exhibited higher CO uptake compared to the DI samples, 

although the agreement between chemisorption-estimated particle sizes (size in nm = 

1/dispersion) is only semiquantitative compared to the XRD and STEM values. The latter 

two sets of particle sizes are in reasonable agreement. 

2.3 DISCUSSION 

     The key to obtaining maximum metal dispersion with a dry impregnation synthesis 

procedure is to anticipate the initial pH needed for the impregnating solution.  By 

sufficiently acidifying or basifying the solutions, for a high PZC or low PZC support, 

respectively, electrostatic adsorption can be achieved.   
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     A potential concern when working with highly acidic or basic solutions is the 

dissolution of the support at pH extremes. It should be noted, however, that pH 

equilibration is relatively rapid, typically on the order of minutes, and the support surface 

will quickly buffer the pH up or down to levels at which the certain charge is high 

enough for the strong electrostatic adsorptions, but moderate enough so that no 

dissolution occurs. In practice, the dropwise or sprayed application of the solution with 

reasonable mixing of the support should prevent significant support dissolution. 

     Electrostatic adsorption has been shown to occur over a wide variety of oxides and 

carbon support materials [21,22]. In many cases, it is the sole adsorption mechanism or it 

can occur in the conjunction with other mechanism such as ion exchange and deposition 

[23]. CEDI can be generalized to all materials by employing the RPA model to anticipate 

the correct initial pH necessary for a particular support material. What needs to be known 

are the support PZC, which is easily found with pH shift measurements [24,25], the BET 

surface area, and the water-accessible pore volume which can be done with a quick water 

titration.  The latter two properties determine the surface loading at dry impregnation, 

where 

          SL (m
2
/L) =   [BET surface area (m

2
/g)]/[pore volume (L/g)] 

     Once the PZC and surface loading of the impregnation system are known, the RPA 

model, which predicts both pH shifts and metal uptake, can be consulted for the proper 

selection of initial pH. In figure 2.5 are presented pH shifts and metal uptakes for a range 

of PZC materials from 2 to 12 (figures 2.5a-f). Over the low PZC materials (2, 4, and 6 in 

figure 2.5a, b, and c), representative of niobia, silica, and anatasetitania, a cationic 
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complex such as PTA, [(NH3)4Pt]
2+

, would be chosen as precursor. Over high PZC 

supports (PZCs 8, 10, and 12 are representative of alumina, carbon black, and magnesia) 

an anion such as PHC, [PtCl6]
2-

, should be chosen. 

a)  

b)  

c)  
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d)  

e)  

f)  

Figure 2.5 RPA prediction of Pt adsorption over oxides of various PZC surface with 

different surface loading from 500-200,000 m
2
/L: a) PZC=2, b) PZC=4, c) PZC=6,  

d) PZC=8, e) PZC=10, f) PZC=12 

 

     The desired final pH can be chosen first with reference to the uptake-pH plot, as 

illustrated in figure 2.6. For a PZC 2 support, the desired final pH would be 9. (The final 

pH for this material could actually be in a wider range, as seen in the wide uptake plateau 

typical of a very low PZC material.) Second, knowing the surface loading which 
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corresponds to dry impregnation, the plot of the pH shift for that material is consulted 

(figure2.6a) and the initial pH is which corresponds to the desired final pH at the known 

surface loading is selected. In the supporting material we provide large, gridded versions 

of the plots in figure 2.5 for convenience. 
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Figure 2.6 Example for how to predict initial pH for optimal adsorption 

     The accuracy of the pH shift prediction is a logarithmic function of the assumed 

hydroxyl density, and is thus only weakly dependent on this value. A typical value of 5 

OH/nm
2
 was used to generate the plots of figure 2.5 and should be sufficient in most 

cases for a reasonable accurate prediction of the pH shift. In some cases such as 

unoxidized carbon supports, which have an order of magnitude lower density of surface 

function groups at low pH than corresponding oxide surfaces [14], the pH prediction may 

be off by one pH unit or so. In any case, the final pH of the dry impregnation paste can be 

measured with a semi-solid pH electrode, of the type used to measure pH in semi-solids 

such as soil and food. With figure 2.5 for guidance and a few experimental measurements 

as confirmation, the initial impregnation pH can be quickly determined. 
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     In this way, charged enhanced dry impregnation can be simply applied to many 

metals and carbon and oxide supports to optimize metal dispersion in laboratory scale as 

well as industrial preparations. 
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CHAPTER 3 

NOBLE METAL OXIDES PZCS AND ADSORPTION OF  

NOBLE METAL PRECURSORS 

 

Strong electrostatic adsorption (SEA) has been established for the synthesis of single 

metal catalysts with a multitude of common supports [16,26]. Job et al. demonstrated that 

the method of SEA allows for fine control of both the structure and morphology of 

supported metal nanoparticles (average particle size, size distribution, degree of 

agglomeration) and it may then be used to minimize the amount of metallic Pt used in 

PEM fuel cells [26]. Jiao et al. demonstrated that SEA appears to be a rational procedure 

for the cost effective, repeatable and scalable preparation of highly dispersed mono-

metallic supported catalysts for all metal ammine complexes adsorbed on multiple 

varieties of silica [16].         

     More recently, SEA has been applied to selective adsorption over promoted oxides 

[17,27]. Feltes et al. investigated the fundamental surface charging properties of an oxide 

in solution to achieve the selective adsorption of a Mn promoter onto the supported 

Co3O4 and not onto the TiO2 support material for Fisher-Tropsch synthesis [17]. Zhao et 

al. also confirmed Mn is selectively adsorbed on Co and not on SiO2 support with the 

impregnation of Mn onto Co/SiO2 by selective SEA of the Mn [27].   

     Noble metal bimetallic catalysts have been chosen as the materials to be 

investigated for this proposal. Noble metals were chosen to maximize impact among the 

catalysis community and for ease of experimentation through the use of SEA, especially 
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the use of a core-shell structure of noble metals (referred by NMs) which has been shown 

to significantly increase reactivity for reactions such as oxygen reduction reaction and 

oxidation of carbon monoxide [28-31]. Pd core@Pt shell catalysts synthesized by the 

method of electroless deposition have demonstrated better activity for the oxygen 

reduction reaction when compared to a 20wt% commercial Pt catalyst [28]. Ru@Pt and 

Rh@Pt nanoparticles (NPs) show increased performance for CO oxidation than 

traditional PtRu and PtRh alloy catalyst [29,30] Au metal core covered by PdO thin shells 

by deposition-precipitation (DP) demonstrated  a synergetic effect in the selective 

arabinose oxidation by molecular oxidation [31].           

     Although SEA also has the potential for the preparation of noble bimetallic 

catalysts, the point of zero charge (PZC) of NM oxides To determine an appropriate 

precursor to selectively adsorb noble metals, the PZC value of the noble metal oxides 

involved are required. For an accurate measurement, large quantities of noble metal 

oxides are needed to measure PZCs at high surface loading. The problem in experimental 

determination is the cost of materials such as Pt which costs in excess of $50,000 

(USD)/kg.  

     Johnson Matthey provided access to the large amounts of NM oxide powders 

needed to perform there measurements at the JMTC in the UK. We measured the PZCs of 

many NM oxides and in addition conducted uptake surveys of NM cationic complexes 

over the NM oxides which neutral to acidic PZCs.         

3.1 EXPERIMENTS 

3.1.1 Materials 

     All chemicals and characterization equipment were graciously provided by JMTC, 
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Sonning Common, UK. The characteristics of the NM oxides studied are summarized in 

table 3.1, and the NM precursor complexes are listed in table 3.2.   

 

Table 3.1 Surface are and pore volume of noble metal oxides 

 

Oxide PtO2 H2O Rh2O3 RuO2 PdO H2O IrO2 Ag2O 

Surface 

Area(m
2
/g) 

104 11 98 118 71 0.2 

Pore Volume 

(ml/g) 
0.85 0.40 0.75 0.2 0.25 0.30 

 

Table 3.2 Cation noble metal complex precursors 

 

# Cation precursor Structure rion Valence MW 

1 Pd tetraamine hydrogen carbonate [Pd(NH3)4](HCO3)2 2.55 +2 296.57 

2 Pt tetraamine hydroxide solution [Pt(NH3)4](OH)2 2.41 +2 297.22 

3 Ru hexaamine trichloride [Ru(NH3)6]Cl3 2.79 +3 294.42 

4 Rh ethylenediamine chloride [Rh(en)2Cl2]Cl H2O 3.12 +1 329.33 

5 Ir ethylenediamine chloride [Ir(en)2Cl2]Cl 3.22 +1 418.77 

6 Au ethylenediamine chloride [Au(en)2]Cl3 3.00 +3 423.52 

rion is a radius (A) of cationic atom. 

 

3.1.2 PZC Measurement of NM Oxides 

     Three point PZC measurements were used to accurately determine oxide PZCs. 

After adding distilled water (pH 5.6) and pH adjusted water (pH 3 and 9) to exactly fill 

the measured pore volume of the oxide at each pH value. At incipient wetness the pH of 
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thick NM oxide slurry was measured through the use of a spear tip combination pH probe. 

The pH meter was calibrated at pH values of 4, 7 and 10 before measurements.  

3.1.3 Uptake Survey of NM Oxides with NM Cation Precursors  

     20ml of each precursor solution was prepared in HDPE bottles and pH of the 

solutions was adjusted over the range 2 to 13. NM oxides (except Ag2O) were then added 

to the pH adjusted solutions to achieve a surface loading of 1000m
2
/L. The slurries were 

filtered after 1 hour contact time and then the NM concentration was determined pre and 

post oxide contact by the ICP-OES (Thermo iCAP 6500). 

3.1.4 Characterization 

A. XRD 

     Powder XRD measurements were made using a Bruker AXS D8 with 45 position 

sample changer. XRD patterns were compared to reference spectra using Bruker AXS 

Diffrac Plus, Eva V16 software. The radiation source was Cu Kα radiation (λ = 1.5406 Å) 

at operating condition of 40kV and 40mA. All patterns were taken in the 10
o
-80

o
 2θ 

range whith a scan rate of 1
o
/min and sampling width of 0.02

 o
. A representative pattern is 

shown in Figure 3.1.  
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Figure 3.1 Example of XRD (PdO·H2O) 

B. BET 

     BET surface area measurements were obtained using an automated adsorption 

system (ASAP, 2100, Micromeritics). After degassing at 150ºC, the samples were 

transported from degassing port to analysis port and doping with N2 in liquid nitrogen 

pool. Surface area were calculated by the linear relation between P/Po and 1/ [v(P/Po-1)] 

with 8 points from 0~0.35 of P/Po values. 

C. XPS 

     XPS measurements were carried out using a Thermo VG Scientific Escalab 250 

operated with monochromatized aluminum Kα radiation and the magnetic lens system 

activated. Charge compensation was provided by an in-lens electron flood gun at 2 V and 

a low-energy argon ion flood source. Survey spectra were collected with a pass energy of 

150 V and detail spectra with a pass energy of 30 V. The samples were dusted onto 

carbon tape and thereby mounted on a standard sample stub. 
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3.2 RESULT 

3.2.1 XPS 

     XPS analysis of the NM oxides was performed to confirm the oxidation state of the 

metals and to investigate the impurity of the surface. The XPS spectra are shown in figure 

3.2. The survey spectrum for PtO2 in figure 3.2a confirms the presence of Pt in the +4 

oxidation state with Pt4f5/2 and Pt4f7/2 binding energies at 76.7 and 73.4 eV, respectively. 

Trace impurity of Cl 2p3/2 (198.1 eV) is indicated in the survey scan. 

     The spectra of Rh2O3 are shown in figure 3.2b. Trace impurities of N 1s (402.9 eV) 

and Cl 2p3/2 (197.9 eV) are seen in the surface scan. The Rh 3d3/2 and 3d5/2 peaks at 313.3 

and 308.5 eV correspond to Rh +3. Spectra for RuO2 are shown in figure 3.2c. The Ru 

3p1/2 and 3p3/2 peaks at 485.7 eV and 463.4 eV reveal Ru +4. Trace impurity of Cl 2p3/2 

(199.1 eV) is confirmed in the survey scan. Figure 3.2d shows the survey spectrum of 

PdO. The binding energies of Pd 3d1/2 and Pd3d3/2 at 342.4 and 337 eV are indicated +2 

oxidation state of Pd. The impurities of Si 2s (150.8 eV) and Cl 2p3/2 (198.6 eV) are 

shown in survey scan. The spectra of IrO2 in figure 3.2e demonstrated that the oxidation 

state of Ir is +4 because Ir4d3/2 and Ir4d5/2 peaks are existed at 313.8 eV and 297.8 eV. 

Trace impurities of Na 1s (1071.1 eV) and Cl 2p3/2 (197.6 eV) are strongly indicated. 

XPS confirmed every NM oxide has right metal valence and oxygen state. I will further 

discuss about contamination of IrO2 at 3.2.3. 
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a)  

  

  

 

 

 

 

 

 

 

 

 

b)  

20000

40000

60000

510520530540550

Pt 4f5/2  

76.7 eV 

Pt 4f7/2  

73.4 eV 

Pt 4d
3/2 &

 
5/2

 Pt 4p
3/2

 

Pt 4p
1/2

 
Pt 4s 

Cl 2p 

O 1s 

Rh 3d3/2  

313.3 eV 

Rh 3d5/2  

308.5 eV 

Rh 3p
1/2 & 3/2

 

Rh 3s 

Cl 2p 

O 1s 

N 1s 

O 1s 



www.manaraa.com

32 

  

c)  

d)  
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  e)  

Figure 3.2 XPS survey of NM oxides a) PtO2 b) Rh2O3 c) RuO2 d) PdO e) IrO2.  

 

3.2.2 PZC of NM Oxide 

     PZC determination by the three point method is shown in figure 3.3. Each of the 3 

different points of initial pH equilibrated to a similar final pH after the surface hydroxyl 

groups of NM oxide became saturated due to the high surface loading and the 

accompanying buffering effect of the pH adjusted solution.[6]. The average value of final 

pH is then regarded as the PZC of each corresponding NM oxide.    

     The averaged PZC value of PtO2 is 1.0, Rh2O3 is 2.2 and RuO2 is 2.7. These NM 

oxides are low or acidic PZC materials. PdO has an averaged value of 4.0, while that of 

IrO2 is 6.0. Both are identified as materials with mid-range or neutral PZCs. Ag2O has a 

PZC value of 9.6 and can be regarded as high or basic PZC material. The determination 
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of PZC of OsO4 was not obtained due to its high toxicity. Finally, that of gold oxide 

cannot be obtained as it is unstable. 

 

Figure. 3.3 3 points measurement for PZCs of NM oxide 

    Based on these PZC measurements, we are able to determine the valence of NM 

precursors appropriate for selective adsorption over each NM oxide. Cationic NM 

precursors can be electrostatically adsorbed effectively over neutral and acidic PZC NM 

oxides (PtO2, Rh2O3, RuO2, PdO and IrO2) in the basic pH range by the interaction 

between cationic precursors (positively charged) and deprotonated surface hydroxyl 

groups (negatively charged) of the metal oxide. Anionic NM precursors will adsorb 

strongly when coupled with neutral and basic PZC NM oxides (IrO2 and Ag2O) due to the 

surface hydroxyl groups of these NM oxides becoming protonated over the acidic pH 

range.       

3.2.3 Uptake Surveys 

     The adsorption of the noble metal cationic complexes listed in table 3.2 was then 
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measured as a function of pH over each noble metal oxide. The results are plotted for 

each NM oxide. 

A. PtO2 (PZC=1.0) 

 

Figure 3.4 Uptake survey of NM cation precursors with PtO2 

     Since PtO2 has an extremely low PZC, every noble metal complex used was 

adsorbed over the entire range of pH values from 2-13. The uptake plots have a 

corresponding wide plateau at the maximum adsorption of metal precursors except for the 

Au and Ru cationic precursors which display unusually high uptake values. The 

adsorption-retarding effect of high ionic strength at extreme values of pH that occur at 

high pH are apparent for all metal complexes studied. The +3 complexes of Au and Ru 

show relatively higher uptake with a maximum surface densities of 3.1 and 2.3 mole/m
2
. 

One of the singly valent cations, Ir, exhibits the lowest level of uptake, while the other +1 

cation, of Rh, exhibits about the same uptake as the doubly valent Pd cation.   

0

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

G
(

m
o

le
/m

2
) 

final pH 

Au+3

Ru+3

Pd+2

Rh+1

Ir+1



www.manaraa.com

36 

  

The maximum surface density of each species might be related to the degree of 

hydration retained by each respective complex. The maximum density of the Ir complex, 

at about 0.88 mole/m
2
, corresponds to a close packed monolayer of Ir complexes which 

retains one or two hydration sheaths. Given the size of the complex at 3.22 Å (table 2.2) 

and the diameter of water, 2.76 Å, this maximum value with two hydration sheaths is 

calculated to be 0.64mole/m
2
. The maximum surface density of the +2 Pd complex and 

the +1 Rh complex, on the other hand, are closer to a layer of complexes which retain one 

hydration sheath. For the 2.55 Å Pd tetraammine complex, this value is 1.87 mole/m
2
 

and for the approximately 3.12 Å diameter Rh ethylenediammine complex, this value is 

1.53 mole/m
2
. The very high values of the +3 Au and Ru complexes are between the 

values expected for one and zero hydration sheathes. For example, the maximum 

adsorption density of the cationic Au precursor is 5.9 mole/m
2
, if no hydration sheaths 

are retained among the adsorbed complexes.  The number of hydration sheaths can be 

used as an adjustable parameter to fit the maximum surface density. The average number 

of hydration sheaths of the Au complex is calculated to be 0.4, while the average number 

of sheaths retained by the Ru complex is calculated to be 0.7. Over PtO2 it appears in 

general that the higher the valence, the lower the number of hydration sheaths retained by 

the adsorbing complex. 

B. Rh2O3 (PZC=2.2) 

     Rh2O3 is an optimal support for the adsorption of noble metal cation precursors 

over the pH range of 3 – 13 because Rh2O3 also has an acidic PZC. The +3 Ru cation 

again displays a relatively high maximum uptake and achieves about the same surface 

density (2.3 mole/m
2
) as over PtO2, corresponding to an average number of hydration  
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Figure 3.5 Uptake survey of NM cation precursors with Rh2O3 

sheaths retained of 0.7 The +3 Au complex does not adsorb to the same high extent over 

Rh2O3 as over PtO2; uptake tops off at 0.9 mole/m
2
 and corresponds to the retention of 

an average of 1.7 hydration sheaths. The Pd tetraammine complex adsorbs to a slightly 

lower level than over PtO2, and appears to retain 1.6 hydration sheaths. 

C. RuO2 (PZC=2.7) 

     When RuO2 was contacted for adsorption surveys, every cationic NM precursor 

adsorbed over a wide pH range. Since the PZC of RuO2 is 2.7, uptake is minimal at pH 

values in the range of 2-3 and high ionic strength is the cause of decreased uptake at the 

higher pHs. Therefore, most of the uptake graphs of NM precursors have a wide volcano 

shape which is typical of SEA. Both +1 precursors (Rh and Ir) again exhibit the lowest 

relative surface densities, which correspond to the retention of 1 or 2 hydration sheaths 

(2.2 and 1.5 for Ir and Rh, respectively). Most notable is the high adsorption density of  
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Figure 3.6 Uptake survey of NM cation precursors with RuO2 

the +2 Pd and +3 Au cations. The experimentally determined value for maximum uptake 

of 7.9 mole/m
2
 and 5.2 mole/m

2
 (for Pd and Au, respectively) is very near the close- 

packed density of complexes retaining no hydration sheaths, 8.1 mole/m
2
 and 5.9 

mole/m
2
. The +2 Pt complex also adsorbs at an unusually high value, 4.9 mole/m

2
, 

corresponding to the retention of an average of 0.3 hydration sheaths.  

D. PdO(PZC=4) 

     The volcano-shaped adsorption profiles over PdO are all reflective of the 

electrostatic mechanism; however the trends with precursor valence seen over other NM 

oxides do not appear here. The uptake of the +3 Au precursor is lowest, while that of the 

+1 Rh complex is highest. The maximum surface density is relatively low; the number of 

hydration sheaths retained is calculated to be 1.7, 2.3, 1.4, and 1.2 for the Pt, Au, Ru, and 

Rh precursors, respectively. The higher PZC of PdO may not give rise to as strong a  
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Figure. 3.7 Uptake survey of NM cation precursors with PdO 

coulombic interaction with the surface, allowing more hydration sheaths to be retained by 

the adsorbed complexes. 

E. IrO2 (PZC=6) 

     The maximum surface density of all complexes is less than 1 mole/m
2
, and like 

PdO it appears that the higher PZC material allows more hydration sheaths (all around 2, 

table 3.3) to be retained by the adsorbing complexes. The +3 Au complex adsorbs to the 

highest extent and the +1 Rh complex to the lowest extent. On the other hand, three of the 

four precursors (Au, Pt, and Rh) appear to adsorb to a significant extent near the 

measured PZC of Ir. Either the measured PZC of IrO2 is incorrect, or there may be more 

than electrostatic interactions between some of the noble metal cationic precursors and 

IrO2. It it noted that in the XPS survey of IrO2 (figure 3.2e) there are significant amounts 

of chloride (197.6 eV) and even more sodium (1071.1 eV). In past research [32], ion 

doping of oxides have been shown to alter PZC; the PZC silica can altered from the  

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

G
(

m
o

le
/m

2 )
 

Final pH 

Rh+1

Ru+3

Pt+2

Au+3



www.manaraa.com

40 

  

 

Figure 3.8 Uptake survey of NM cation precursors with IrO2 

typical of 4 to near 8 by K doping. In this case, IrO2 has both Na and Cl contamination 

but Na is observed to be at a concentration roughly double that of Cl, and the net effect 

might be a measured IrO2 PZC higher than the actual value. The previous study [32] also 

showed that the dopant had no effect on adsorption. 

     Moreover, PZC tends to vary dramatically with the metal valence; silica (Si
4+

) is 

about 4, alumina (Al
+3

) is about 8, and magnesia (Mg
+2

) is about 12. Compared with PtO2 

(Pt
4+

, PZC=1) and RuO2 (Ru
4+

, PZC=2.7), IrO2 (Ir
4+

) expected to have a more acidic PZC 

than measured PZC 6. It may thus be the case that the PZC of IrO2 is below the measured 

value; the adsorption trends would indicate a PZC of perhaps 2-3. 

      It is noted that galvanic replacement has not been observed in the entirety of the 

experiments. This mechanism would have been detected by the presence of the dissolving 

metal oxide in solution and no such dissolved metals were ever detected.  
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3.3 DISCUSSION 

     Two general trends were observed in the noble adsorption surveys. First, the 

maximum adsorption density was usually in proportion to the valence of the adsorbing 

precursor. The +1 Rh and Ir precursors most often exhibited the lowest maximum uptake, 

while the +3 Au and Ru complexes often adsorbed at the highest density. One exception 

was RuO2, over which the Au and Pd precursors lost all hydration and the maximum 

surface density was dictated by the size of the NM complex itself. Another exception was 

PdO, over which the +1 Rh complex adsorbed at the highest density and the +3 Au 

complex at the lowest. Over PdO all precursors appear to retain 2 hydration sheaths, so 

once again the surface density is dictated primarily by the size of the respective 

complexes. A second general trend is that over the lowest PZC NM oxides Rh2O3, PtO2, 

and particularly RuO2, the electrostatic interaction appeared so strong that the adsorbing 

complexes lost their hydration sheaths to a considerable extent. Normal values for the 

number of hydration sheaths retained by NM and base metal ammine complexes over 

silica (PZC near 4) is 1 to 2 [15,16]. Either the lower PZCs of the acidic PZC NM oxides, 

or a non-electrostatic mechanism present over NM oxide surfaces might account for this 

effect. Future modeling efforts will be directed toward a more precise understanding of 

the interrelationship between size, valence, the number of hydration sheaths and PZC.   

     The experimental results of NM precursor adsorption onto NM oxides can be used 

to guide the rational synthesis of supported noble metal bimetallic particles, if the 

assumption is made that nanoparticulate noble metal oxides exhibit the same adsorptive 

properties as the bulk noble metal oxides tested here. (In fact, the high surface area PtO2 

and PdO materials at 104 and 118 m
2
/g, respectively, do have small primary particle size, 
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on the order of 5.7 and 6.1 nm.) The maximum adsorption density achievable over a 

particular NM oxide by another NM precursor and the final solution pH at which this 

occurs, are known. These data are collected in table 3.3.  Thus the amount of NM 

precursor deposited onto a NM oxide nanoparticle surface is known, and accounting for 

the dispersion of the NM oxide nanoparticle, the amount of NM precursor adsorbed per 

total NM oxide particle can be calculated. Assuming that NM oxides shrink about 20% as 

they are reduced, the shellNM/coreNM molar (or atomic) ratio for various core NM 

particle sizes can be further calculated. 
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The idea is illustrated in figure 3.9. For smaller NM oxide (core) particles, the amount of 

adsorbing NM precursor (NM shell) will be relatively high compared to larger NM oxide 

cores. 

  

 

 

 

 

 

Figure 3.9 Schematic of the adsorption over small size support vs big size support 

As an example, for a 2 nm core of PtO2 (with a dispersion of 0.5, or one surface Pt atom 

per 2 total atoms), the Rh complex adsorbs at 1.36 mol/m
2
 at a solution pH of 11. The 

NM site density in the oxide particles is assumed to be the typically employed value of 1 

x 10
19

 sites/m
2
. The molar ratio of shell Rh/core Pt is therefore 

 

 (
1.36𝜇𝑚𝑜𝑙𝑒 𝑅ℎ

𝑚2 𝑜𝑓 𝑃𝑡𝑂2
)(

𝑚2𝑜𝑓 𝑃𝑡

1 ∗ 1019 𝑃𝑡 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑠𝑖𝑡𝑒𝑠
)(

𝑚2 𝑜𝑓 𝑃𝑡𝑂2

0.8 𝑚2 𝑜𝑓 𝑃𝑡
)(

6.02 ∗ 1023𝑜𝑓 𝑃𝑡 𝑎𝑡𝑜𝑚𝑠

1 𝑚𝑜𝑙𝑒 𝑜𝑓 𝑃𝑡
)(

𝑃𝑡 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑠𝑖𝑡𝑒𝑠

2 𝑃𝑡 𝑎𝑡𝑜𝑚𝑠
)(

𝑚𝑜𝑙𝑒

106𝜇𝑚𝑜𝑙𝑒
) 

 

For a 1 nm particle (100% versus 50% dispersion), this ratio will be double to 0.05.  For 

a 10 nm particle (10% versus 50% dispersion), the ratio will be five times lower at 0.05. 

     Plots calculated for a single SEA application of the various NM precursors are 

shown in figure 3.10. For PtO2 (figure 3.10a), molar ratios of 0.21 to 0.06 can be 

achieved with the various NM precursors if the Pt phase is very well dispersed (1 nm 

particles). Over poorly dispersed, 10 nm particles, the molar ratios drop to 0.025 – 0.001. 

Similar loadings are seen over Rh2O3 (figure 3.10b), while for RuO2, over which most 

H2 

H2 
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NM precursors lost the entirely of their hydration sheaths, ratios as high a 0.54 can be 

achieved for the multivalent precursors, with the smallest RuO2 particles.  PdO and IrO2, 

which adsorbed the lowest density of NM precursors, have the lowest molar ratios of 

shell to core metal. 

a)  

b)  
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c)  
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e)  

Figure 3.10 Max. shell metal ratio vs particles size of core metal oxide a) PtO2 b) Rh2O3 c) 

RuO2 d) PdO e) IrO2 

 

     Applying a shell of NM onto a core of supported NM oxide nanoparticles can be 

termed “sequential SEA” or seq-SEA, if the first NM oxide is itself deposited by SEA. 

This method is demonstrated in the next two chapters, and is applied by reference to 

figure 3.10 and table 3.3 to identify the attainable molar ratios of shell metal and the pH 

at which the deposition must occur. 

3.4 CONCLUSION 

     Table 3.4 lists the measured PZCs of most NM oxides. Most possess acidic PZC  

 

Table 3.4 Measured PZCs of NM oxides 

Oxide PtO2 H2O Rh2O3 RuO2 PdO (H2O) IrO2 Ag2O 

PZC 1.0 2.2 2.7 4.0 – 7.0 (6.0) 9.7 
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values are readily adsorb cationic precursors over a wide pH range. The PZC 

measurement is questionable for IrO2, which contained significant Na
+
 and Cl

-
 impurities; 

adsorption trends suggest a PZC of 2-3. PdO is unusual in that its hydrated and non-

hydrated forms appear to exhibit different PZCs (4 and 7 respectively). 

     Two general trends were observed in the noble adsorption surveys. First, the 

maximum adsorption density was usually in proportion to the valence of the adsorbing 

precursor. Second, over the lowest PZC NM oxides Rh2O3, PtO2, and particularly RuO2, 

the electrostatic interaction appeared so strong that the adsorbing complexes lost their 

hydration sheaths to a considerable extent.      

     Continuing work includes surveys of noble metal anions onto neutral and basic 

PZC materials. The PZC and adsorption results presented here will give great guidance to 

those who wish to employ SEA to synthesize bimetallic catalysts.  Future modeling 

efforts will be directed toward a more precise understanding of the interrelationship 

between size, valence, the number of hydration sheaths and PZC. 
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CHAPTER 4 

Pd-Pt BIMETALLIC CATALYSTS 

Noble bimetallic catalysts are ubiquitous in both academia and industry. A survey of the 

literature covering catalysis reveals over two hundreds articles and a similar number of 

patents pertaining to a multitude of bimetallic systems, with applications in air pollution 

abatement, petroleum refining, Fisher Tropsch synthesis, as well as fuel cell catalysts for 

both reactions occurring at the anodes and cathodes. A system of great interest are Pt-Pd 

bifunctional catalysts that impart improved performance for methane combustion [33-38], 

improved sulfur tolerance in the hydrogenation of aromatics [39-50], destruction of 

volatile organic compounds (VOCs) which are considered to be one of the major 

contributors to industrial air pollution [51-53], electrocatalysts for fuel cell [54-56] and 

hydrodeoxygenation of benzonfuran for biomass conversion [57]. In almost all cases just 

referenced, Pt-Pd bimetallic catalysts show increased activity and improved catalyst 

stability when compared with single Pt or Pd catalysts.  

     More than 50% of the literature surveyed employed dry impregnation to synthesize 

Pt-Pd bimetallic catalysts. Dry impregnation is used most often for the synthesis of 

bimetallic catalysts due to the simplicity of synthesis; two metal precursors are dissolved 

into the amount of solution just necessary to fill the pore volume of the support. The 

solution is contacted with the support, and the thick paste formed is dried and pretreated. 

However, when using dry impregnation, the intimate interaction of the two cannot be 
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well controlled and usually occurs only to a minimal extent. 

     Several types of catalyst synthesis methods have been developed to ensure metal-

metal interaction. First, bimetallic particles can be produced as colloids [58-59] or in 

dendrimers [60-62]. The advantage of these preparations is that bimetallic particles of a 

precisely controlled composition and size can be synthesized. However, problems exist 

even with these “template” preparations since thermochemical treatments are needed to 

react away the template and this treatment invariably leads to sintering of the supported 

metal particles. 

     Direct metal-metal interactions can be arranged electrochemically [63]; yet a more 

ingenious method is that of electroless deposition or surface redox preparations [28,63-

65], in which a reduced metal surface has sufficient reduction potential to reduce a 

dissolved cation of a second metal which in turn can form core-shell particles. High 

loading of the shell metal can be achieved, however, the depositing metal can also absorb 

onto itself and this autocatalytic deposition can make the formation of a contiguous 

metallic shell difficult. Another minor practical drawback of this method is the 

complexity in establishing a metastable deposition bath in some systems. 

     In this chapter it will be demonstrated that Strong Electrostatic Adsorption (SEA) 

can be applied to the synthesis of bimetallic nanoparticles.  The manner in which SEA 

can be applied to bimetallic catalysts is depicted in figure 4.1. For the sake of 

completeness, in figure 4.1a dry impregnation (DI) is shown. In this method, two metal 

precursors are placed in solution but no provision is made for the metal precursors to 

interact with the support surface, and often the result is large, poorly dispersed and poorly 

distributed aggregates of separate metal particles. On the other hand if a mixture of 
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cationic precursors is placed in solution above a negatively charged surface (figure 4.1b), 

a mixed monolayer of precursors will be electrostatically adsorbed onto the surface and 

upon reduction, small, well dispersed particles with even distribution and homogeneous 

alloying will result. This method can be termed simultaneous or co-SEA. If instead of 

homogeneously alloyed particles, core-shell morphologies are desired, the sequential-

SEA (seq-SEA) procedure of figure 4.1c can be followed. The core metal is initially 

deposited by SEA and then oxidized.  With the judicious selection of a support that has a 

different PZC than the supported metal oxide, opposite charges can be induced on them 

such that a second metal precursor, the shell metal, can be selectively deposited onto the 

core metal oxide, which after reduction, reverts to a metal core and shell. 

     In this chapter, the degree of control represented in figure 4.1 will be demonstrated 

for several real, high surface area catalyst systems by the extension of SEA; at the same 

nominal catalyst composition, the plausibility of synthesizing well dispersed 

homogeneously alloyed or core-shell nanoparticles will be demonstrated. These “rational” 

preparations will be compared to the common procedure of dry impregnation. 
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Figure 4.1 Schematic of working hypothesis for bimetallic catalyst preparation: (a) DI 

will produce separate metal particles, (b) co-SEA will yield highly dispersed, alloyed 

metal particles with low T reductions, (c) sequential SEA will give rise to highly 

dispersed, core-shell structures at low reduction T, and larger, alloyed particles at high 

reduction T.  

 

4.1 SUPPORTED SINGLE Pt OR Pd METAL CATALYST BY SEA AND Pt/Pd 

ALLOY CATALYST BY CO-SEA 

 

4.1.1 Experiments 

     In order to determine the optimal pH leading to maximum metal loading, 

adsorption surveys were conducted according to the PZC value of the supports. Oxidized 

Carbon -Vulcan-72ox (oxC, BET area: 170 m
2
/g) and Aerosil 300 (SiO2, BET area: 330 

m
2
/g) from Evonik were used as low PZC supports for the adsoprtion of cation precursors; 

TetraamminePlatinum(ll) Chloride([PTA, Pt(NH3)4]Cl2, 99.999%) or Tetraamine 
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Palladium(ll) Chloride(PdTA, [Pd(NH3)4]Cl2, 99.9%). Chloroplatinic acid (PHC, 

H2[PtCl6], 99.9%) or Sodium tetrachloropalladium (PdTC, Na2[PdCl4], 99.9%) were used 

as the anion precursors on high PZC support; a commercial -alumina (Al2O3, BET area: 

277 m
2
/g) from UOP and carbon (Vulcan-XC72, BET area: 254 m

2
/g) from Cabot. To 

produce a low PZC oxidized carbon (oxC), 5-10g of C was mixed with 300ml of 

concentrated nitric acid and heated to around 90-95°C for 3 hours. After cooling to room 

temperature the slurry was repeatedly washed and filtered with deionized water until the 

pH of the filtrate was near a pH value of 5. The slurry was dried at room temperature 

overnight and then placed in a furnace with air at 300°C for 1hr.   

 

Table 4.1 Supports and precursors 

Support PZC Surface Area Precursor 

Silica (Aerosil 300) 3.3 330 m
2
/g 

PTA and PdTA 

Oxidized Carbon(oxVulcan-XC72) 2 170 m
2
/g 

GAlumina (VGL-25) 8.5 277 m
2
/g 

PHC and PdTC 

Carbon (Vulcan-XC72) 8.9 254 m
2
/g 

 

     Aqueous solutions of 1mM PTA or PdTA were prepared and dosed into several 50-

ml flasks. The pH values of all these solutions were adjusted using HCl or NaOH 

between pH value of 0.5 and 13.5. PHC solution were prepared over the pH range of 0.5-

10 using HCl or NaOH. Since PdTC solution can be precipitated without the presence of 

excess of Cl
-
, PdTC salt was dissolved in DI water to make 1mM solution and 5.6 times 

excess Cl
-
 ions were added through the use of HCl to ensure stability of the complex in 



www.manaraa.com

 

54 

 

solution over the required pH range [66]. HNO3 and NH4OH were used to adjust the pH 

of the PdTC solutions from 0.5 to 5, being careful to maintain a maximum pH value of 5 

with NH4OH since the anionic palladium chloride complex converts to cationic Pd 

ammine complex which will not electrostatically adsorb over the support surface [66]. 

For the co-SEA uptake survey, a mixture of 1mM of Pt and 1mM Pd solution was used. 

     A high PZC support was weighed out to obtain the desired 1000 m
2
/L surface 

loading (SL) in 50 mL of solution. The low PZC support was weighed out for 500 m
2
/L 

surface loading with 50mL solutions.  

)L( solution of Volume

)g/m( area surface oxide  )g( solid of mass
)L/(m SL

2
2 

  

     Each support powder was added to 50mL of each pH adjusted solution and shaken 

for 1 hour. Final pH values were measured and 5mL of slurry solution was filtered for 

Inductively Coupled Plasma (ICP, Perkin-Elmer Optima 2000DV) analysis. Initial 

solutions which were not contacted with support, at each pH value, were also measured 

with ICP to establish initial concentrations. Pt and Pd calibration standards were diluted 

from a 10,000 ppm Pd and 10,000 ppm Pt stock solutions. The calibration curves were 

obtained for 200 and 500ppm of Pt and Pd solutions. 

     Adsorption data is plotted with the final pH values along the x-axis and platinum 

(or palladium) adsorption along the y-axis as G (μmol/m
2
). The optimal final pH was 

obtained by the above adsorption experiments.  

)/(1000*)/(*)/(

)/(10
)/)(()/(

2

6
2
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 G

 

     To synthesis the amount of catalyst needed for characterization and reactivity 

evaluation, the adsorption survey experiment was simply scaled up to 1L at optimal pH; 
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3.0 g of silica or 5.9 g of oxC was added into 1 mM PTA solution or 1 mM PdTA solution. 

After shaking 1 hour, the slurry was filtered, dried and reduced to make Pt/SiO2, Pd/SiO2, 

Pt/oxC and Pd/oxC. Pt/Al2O3, Pd/Al2O3, Pt/C and Pd/C were also made by same process 

with either 1 mM PHC solution or 1 mM PdTC solution. 

     Samples prepared by co-SEA were produced in the same manner with mixed 

solution of 1 mM Pt and 1 mM Pd at the optimal uptake pH. All samples were dried at 

room temperature overnight and then reduced for 1hr with 10%H2/He at the appropriate 

temperature based on TPR with a ramp rate 2.5°C /min.  

4.1.2 Characterization 

A. XRD 

     Powder XRD measurements were made using a Rigaku MiniFlexII bench-top 

system. XRD patterns were compared to reference spectra using PDXL 2.0 (Rigaku 

Corporation) software. The radiation source was Cu Kα radiation (λ = 1.5406 Å) at 

operating condition of 30kV and 15mA. All spectra were taken at a scan rate of 0.5
o
/min 

and sampling width of 0.02
 o
. 

B. TPR 

     Micromeritics Autochem ll 2920 used for TPR, the flow rate was 50cc of 10% 

H2/He, the temp range from 25°C to 800°C and ramp rate was 5°C/min. TCD signal 

recorded every 0.1sec. Mass spec used fixed-bed quartz reactor and dried in He at 110 °C 

for 60 min then, the sample was cool down to RT and TPR profiles were obtained by 

flowing 1% H2/Ar gas mixture form 25 to 500 °C with a ramp of 5 °C/min. 

C. STEM and EDXS 

     Scanning transmission electron microscopy (STEM) at USC was used to obtain 
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images of co-SEA and co-DI catalysts with a JEOL 2100F 200kV FEG-STEM/TEM 

equipped with a CEOS Cs corrector on the illumination system. The geometrical 

aberrations were measured and controlled to provide less than a π/4 phase shift of the 

incoming electron wave over the probe-defining aperture of 17.5 mrad. High angle 

annular dark-field (HAADF) STEM images were acquired on a Fischione Model 3000 

HAADF detector with a camera length such that the inner cut-off angle of the detector 

was 50 mrad. The scanning acquisition was synchronized to the 60 Hz AC electrical 

power to minimize 60Hz noise in the images and a pixel dwell time of 15.8µs was used. 

     The JEM-ARM200CF at the U. Illinois at Chicago was used for images and 

elemental mappings of seq-SEA and co-DI catalysts. The JEM-ARM200CF is a probe 

aberration corrected 200kV STEM/TEM with a cold field emission source with 0.35eV 

energy resolution. For HADF imaging at 200kV this instrument has a resolution of less 

than 0.08nm. STEM images can be collected from up to four of the five STEM detectors 

simultaneously. For microanalysis the microscope is equipped with an Oxford X-max 80 

SDD X-ray detector. Probe size 1A, probe current 14 Pa, 20um aperture. 256 pixel 

resolution, pixel dwell time is microseconds, using oxford instruments X-Max TLE 

100mm
2
 detector with about 0.7 Sr solid angle of collection, most of maps collected 

within 5min, short collection time to ensure core-shell maintains integrity. 

D. Catalytic Activity: Oxidation of Diesel Exhausted Gas 

     JMTC in the UK has evaluated several Pt/Pd catalysts for abatement of a model 

diesel exhaust mixture. They used 0.1g catalyst in a ‘Diesel 4HC' test. Gas composition is 

5% CO2, 5% H2O, 14% O2, 1500ppm CO, 150ppm NO, 40ppm CH4, 37ppm propylene, 

26ppm decane and 16ppm toluene in N2 carrier. The bed of catalyst pellets is maintained 
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at 110°C before ramping at 10°C/min to 500°C. Gas flow through the bed is 2L/min. 

Aging treatment are calcination at 500°C for 2hrs, and at 750°C for 10hrs. 

4.1.3 Results and Discussion 

A. Uptake survey of single metal adsorption by SEA 

     In figure 4.2a the maximum adsorption of cationic Pt ammine on silica is observed 

to be 1.0 μmol/m
2
 and Pd ammine maximum adsorption is 1.3 μmol/m

2
, both with 

volcano shaped uptake patterns typical of SEA. On oxC (figure 4.2b), Pd ammine 

adsorption is slightly increased when compared to silica,
 

whereas the maximum 

adsorption density of Pt is the same as on silica. Because the PZC of oxC is lower than 

silica, the adsorption plateaus are wider than for silica. 

     The maximum adsorption density of Pt chloride anions is about 2.0 μmol/m
2
 on 

alumina and 1.8 μmol/m
2
 on carbon (figure 4.2c and d). The adsorption of Pd chloride is 

considerably different between alumina and carbon. Carbon absorbs significantly more 

Pd chloride than alumina; maximum Pd adsorption is 1.0 μmol/m
2
 on carbon, and 0.6 

μmol/m
2
on alumina. 
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b)  

 c)  
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 d)  

Figure 4.2 Single metal adsorption on a) SiO2 b) oxC c) Al2O3 d) C 

 

B. Uptake survey of two metal adsorption by co-SEA 

     The uptake of metals from a mixture of Pd and Pt ammines is shown in figure 4.3a. 

Pd cations dominate Pt cations when adsorption occurs at medium pH, while Pt cations 

dominate Pd cations when adsorption occurs at high pH. Maximum total metal adsorption 

density over silica is 1.3 μmol/m
2
, the same as single metal Pt maximum adsorption 

(figure 4.2a). Figure 4.3b shows Pt and Pd cations are more evenly adsorbed though Pd 

pre-dominates slightly at neutral pH over oxC. Both contribute to increase of total metal 

adsorption density (1.9 μmol/m
2
). The higher adsorption densities may arise from the 

sharing of hydration sheaths between two metals. 

     The anionic precursors (figure 4.3.c and d) exhibit different trends from the 

cationic ones. Total metals maximum adsorption density is always lower than single 

metal adsorption; total maximum adsorption density on alumina is 1.24 μmol/m
2
 and 1.1 

μmol/m
2
 on carbon but single metal Pt maximum on alumina is 1.64 μmol/m

2
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μmol/m
2
 (figure 4.2c and d). PHC generally dominates over PdTC in the adsorption 

process at all acidic pHs. Therefore, total metals adsorption does not occur at a value 

higher than that of the case of a single metal. 
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 c)  

 d)  

Figure 4.3 Two metal co-SEA adsorption on a) SiO2 b) oxC c) Al2O3 d) C 

     Table 4.2 summarizes the metal loading of each catalysts prepared at the pH of 

maximum uptake. The results of co-SEA with cation precursors show that higher wt% 

can be produced versus single metal SEA, but anion precursors do not adsorb more 

densely in combination and this leads to co-SEA with chloride precursors yielding 

bimetallic catalysts with lower metal weight loading than single metal SEA. 
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Table 4.2 Metal wt% of each catalyst by ICP result 

Support Type Pt wt% Pd wt% 

silica 

Single Pt SEA 5.0 - 

Single Pd SEA - 4.0 

Pt-Pd co-SEA 4.5 2.0 

oxC 

Single Pt SEA 3.0 - 

Single Pd SEA - 2.5 

Pt-Pd co-SEA 3.0 1.8 

alumina 

Single Pt SEA 11 - 

Single Pd SEA - 2.1 

Pt-Pd co-SEA 5.3 1.6 

C 

Single Pt SEA 8.3 - 

Single Pd SEA - 2.7 

Pt-Pd co-SEA 4.0 1.0 

 

C. Temperature Programmed Reduction (TPR) 

     Temperature programmed reduction results for all catalysts listed in table 4.2 are 

shown in figure 4.4. Figure 4.4a shows that PdTA on silica can be reduced at lower 

temperature (180
o
C) than PTA (210

o
C) and the reduction temperature of co-SEA sample 

is as low as PdTA, likely from H2 spillover from Pd. Over oxidized carbon (figure 4.4b) 

the methanation of carbon occurs at elevated high temperature near 620
o
C for the metal 

free support, but after Pt and Pd adsorption, the methanation temperature decreased to 

near 450
o
C and the reduction temperature also can be reduced to a value lower than the 

single metal reduction temperature. The mass spectrogram of ammonia in figure 4.4c, for 

the PdTA sample in figure 4.4b, confirms that the decomposition of PdTA has a double 

peak. 

    PHC on alumina reduced at 210
o
C (figure 4.4d) and PdTC reduced completely at 

150
o
C. But co-SEA exhibits only one peak near 180

o
C, while co-DI has one peak near 

180
o
C and another small peak near 210

o
C. This suggests that co-SEA on alumina 

produced alloyed particles and co-DI produced both alloyed and Pt only particles. Figure 
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4.4e does not manifest the alloy effect on co-SEA because the Pt wt% is much higher 

than that of Pd.  

a)  

b)  
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c)  

d)  

e)  

Figure 4.4 TPR results over a) silica b) oxC c) Mass-spec of PdTA on oxC d) alumina e) 
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D. X-ray Diffraction (XRD) 

     Catalysts were reduced at the appropriate temperature based on TPR results in 

figure 4.4. The four series of catalysts, consisting of individual Pt and Pd nanoparticles 

prepared by SEA, and Pt/Pd bimetallic particles prepared by co-SEA and co-DI, over the 

four supports; silica, oxC, alumina and unoxidized C, were next characterized by powder 

XRD. These results are shown in figure 4.5. 

a)    
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c)  

d)  

Figure 4.5 XRD result a) Silica b) oxC c) Alumina d) C 

     In figure 4.5a, wide Pt3O4 (210) and (211) peaks are only detected over both silica 

supported monometallic Pt catalyst synthesized by SEA and bimetallic Pt-Pd catalyst 

produced by co-SEA. Using the Scherrer equation, the estimated particle sizes of 

monometallic Pt and co-SEA are determined to be 1.3nm. No Pd crystal peaks appear 

over either SEA or co-SEA cases.  

     Over oxC, neither Pt nor Pd crystalline peaks are detected (figure 4.5b). The metal 
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particles may be too small to be detected by XRD or the metal phase is still amorphous, 

although TPR (figure 4.4) suggests reduction temperature is low enough to reduce the 

metal precursors. Pt particle size may be smaller on oxC than silica because of the 

interaction between Pt cation and the oxC support may be stronger than on silica. 

     The high PZC supports, alumina and unoxidized C, exhibit the CEDI effect 

(chapter 2) in co-DI samples. The PHC precursor has a low inherent pH which induced 

charge on the high PZC surfaces. Particles are smaller than the cationic cases (figure 4.5 a 

and b) but multiple phases are detected by XRD analysis; crystalline Pt oxide, Pd and Pt-

Pd alloy. Meanwhile, co-SEA has only one fcc crystal phase, that of the Pt-Pd alloy.  

E. Scanning Transmission Electron Microscopy (STEM) 

     High resolution z-contrast images, EDXS line scans, and EDXS nanoparticle maps 

of the four sets (silica, oxC, alumina, and C supported) of co-SEA and co-DI catalysts are 

given in figure 4.6. The average particle size from image analysis of these catalysts is 

compared to XRD results in Table 4.3. On SiO2, co-SEA particles  (figure 4.6a) have 

average size of 1.1nm, consistent with XRD (1.2 nm), and are speckled in appearance. 

Inn these z-contrast images, the brighter atoms in the particles are most certainly 

individual Pt atoms (as opposed to, say, vertical columns of Pd), while the darker atoms 

are Pd. The homogeneity of the alloying is evident by the even speckling of the particles. 

Maps of individual nanoparticles were not possible given the insulating (and therefore 

unstable) nature of the silica in the electron beam, however line scans across particles, as 

seen in figure 4.6a, additionally confirm the simultaneous presence of Pt and Pd. This 

was found to be the case in all of the four particles line-scanned. Turning to the co-DI 

silica sample in the lower portion of figure 4.6a, although the average particle size was 
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calculated by image analysis (table 4.3) to be 4.7nm, some of particles are large (~50nm), 

agglomerated and non-uniform.  The small sampling size of STEM is the reason for the 

discrepancy in the size estimates of STEM and XRD (20 nm). Furthermore, EDXS scans 

of the large metal agglomerates revealed that parts of the agglomerates are Pd rich and 

others are Pt rich.  

     In Figure 4.6b, the co-SEA catalyst supported on oxC is seen to be well dispersed 

with uniformly distributed 1.0 nm (consistent with XRD) particles. The conductive 

carbon supports are sufficiently stable in the electron beam so that individual nanoparticle 

maps can be obtained; a representative map (one of four obtained) again reveals the 

homogeneity of alloying of Pt and Pd in the nanoparticle. The co-DI particles on oxC are 

once again nonuniform in size, shape, and distribution.  The small sampling size of 

STEM explains the discrepancy of the STEM size estimate (2.0 nm) to XRD (18 nm).  

     STEM analysis of the alumina supported materials is shown in figure 4.6c. The co-

SEA sample once again possesses well dispersed, uniformly distributed particles, with a 

STEM-estimated particles size (1.7 nm) in good agreement with XRD (2.0 nm). A 

representative line scan (one of x) again reveals the simultaneous presence of both metals. 

While the co-DI sample was seen by XRD to have relatively small particle size (3.0 nm) 

by the CEDI effect as mentioned previously, STEM imaging reveals that the metals can 

still aggregate over the alumina support with co-DI. The distribution of nanoparticles 

appears to be much more uniform with co-SEA. 

     Stem imaging of the unoxidized carbon-supported nanoparticles is given in figure 

4.6d. Co-SEA with the anionic chloride precursors over unoxidized carbon appears to be 

essentially parallel to co-SEA with cationic ammine precursors over oxidized carbon in 
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figure 4.6a. STEM particle size with co-SEA on C is 1nm, in reasonable agreement with 

XRD (1.5 nm); the particles are relatively well dispersed and evenly distributed, whereas 

the small sampling size explains the discrepancy of the co-DI STEM size estimate (1.1 

nm) with XRD (4.0 nm). In the entire STEM analysis, the small sample size is less of a 

problem for the co-SEA-derived nanoparticles because the size distributions are relatively 

tight. Finally, the representative nanoparticle maps in figure 4.6d reveal relative 

homogeneity of alloying in both the co-SEA and co-DI samples, the latter occurring 

likely due to the CEDI effect. 

 

Table 4.3 Average particle size (nm) analysis 

Support Silica oxC Alumina C 

Method 
co-SEA co-DI co-SEA co-DI co-SEA co-DI co-SEA co-DI 

XRD 1.2 20 <1.5 18 2.0 3.0 1.5 4.0 

STEM 1.1 4.7 1.0 2.0 1.7 2.0 1.0 1.1 
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Figure 4.6 STEM and EDXS a) silica b) oxC c) alumina d) C 
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4.2 ALUMINA OR SILICA SUPPORTED Pd/Pt CORE-SHELL BIMETALLIC 

CATALYST BY SEQ-SEA 

 

4.2.1 Experiments 

A. Uptake survey of seq-SEA 

     In the preceding section, co-SEA has been used to synthesize homogeneously 

alloyed nanoparticles. In this section, attention is turned to core/shell morphologies.  

Recalling figure 4.1, a second metal precursor, the shell metal, will be adsorbed onto the 

first supported metal oxide, or the core metal. PHC has been used for Pt shells on SEA-

derived Pd/SiO2, PTA for Pt shells on SEA-derived Pd/alumina and PdTA for Pd shells on 

SEA-derived Pt/alumina.   

     The first step in the application of seq-SEA is to determine the optimal pH leading 

to maximum metal 2 loading on the metal 1 oxide. To this end, adsorption surveys were 

conducted in pH ranges appropriate for the PZCs of the metal 1 oxide and oxide support. 

An uptake survey of Pt (or Pd) 200ppm precursor is conducted with the same 

methodology as in section 4.1.1. The only difference is calculation of the appropriate 

amount of 4wt%Pd/SiO2 (or 2wt%Pd/Al2O3 or 6wt%Pt/Al2O3) for a desired 1000 m
2
/L 

(or 500 m
2
/L) surface loading. For seq-SEA, only the Pd oxide surface area (metal 1 

oxide) is used to calculate the area of adsorption. For example, it is assumed that all PdO 

particles are hemispherical and the average diameter is 1.0 nm on SiO2 (confirmed by 

STEM). The surface area of each PdO is 4πr
2
/2= 1.57nm

2
 and the volume of each PdO is 

2πr
3
/3= 0.26nm

3
. Bulk PdO density is 8.3 g/cm

3
. The number of PdO particles in 1 gram 

of PdO/SiO2 is calculated as 

# 𝑜𝑓 𝑃𝑑𝑂

1𝑔 𝑜𝑓 𝑃𝑑𝑂/𝑆𝑖𝑂2
=  

0.04𝑔 𝑃𝑑𝑂

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑃𝑑𝑂/𝐸𝐴
∗

1

𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑃𝑑𝑂
∗ (

1𝑚

100𝑐𝑚
)3 ∗ (

109𝑛𝑚

1𝑚
)3 
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# of PdO * 1.57nm
2
(Surface Area of each PdO) = SA of PdO in 1g of PdO/ SiO2   

 

In this calculation, 1.85*10
19

 particles of PdO exist in 1g of PdO/SiO2 and their total 

surface area (SA) in1g of PdO/SiO2 is 29.1m
2
/g. After finding out the SA of all PdO 

nanoparticles, the 34.4 grams of PdO/SiO2 is needed for 1000 m
2
/L (SL) of PdO. 

 

 (1000m
2
/L)/(SA of PdO in 1 g of  PdO/SiO2) = (1000m

2
/L)/(29.1m

2
/g) = 34.4g/L 

 

B. Catalyst synthesis 

     The PZC of PtO2 is determined to be 1.0 as shown in chapter 3. The versatility of 

sequential SEA can be demonstrated by synthesizing in parallel Pd shell/Pt core over high 

PZC supports, and Pt shell/Pd core over low PZC supports. The first scheme is illustrated 

in figure 4.7a. For Pt cores, Pt anions can be electrostatically adsorbed onto Al2O3, which 

has a high PZC. After reduction, the ultrasmall Pt nanoparticles spontaneously oxidize to 

become supported PtO2 particles. Because PtO2 has an extremely low PZC, Pd cations 

selectively adsorb over deprotonated PtO2 surface instead of protonated alumina surface, 

and will then form a core-shell structures after reduction. The scheme illustrated in figure 

4.7b can work if the PZC of PdO is higher than the PZC of support materials that is, if 

PdO can adsorb anions at low pH.  

     At the optimal pH, metal 2 precursor solution deposits onto appropriate metal 1 

oxide over support. After shaking for 1 hour, the slurry is filtered, dried at room temp for 

48hrs and then reduced for 1hr with 10%H2/He at appropriate temperature and the ramp 

rate is 2.5°C /min.  
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 (a) High PZC support 

 

 

(b) Low PZC support 

  

Figure 4.7 Sequential SEA for the synthesis of a) Pt core@Pd shell particle and b) Pd 

core@Pt shell particle. 

 

     A drawback of SEA is illustrated in figure 4.8. The surface coverage of a metal 2 

precursor shrinks significantly as it reduces and loses its hydration layer(s) and ligand 

sphere. Therefore, in a single SEA shell application, only a fraction of a monolayer can 

be synthesized. Sequential SEA cycles (adsorption, reduction, reoxidation of the core 

metal) can be employed to build up the loading of the shell metal.   

 

 
Figure 4.8 SEA/reduction cycles to build shell metal loading 
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4.2.2 Result and Discussion 

A. Uptake survey for selective adsorption 

     Uptake surveys of PdTA over alumina, pure Pt oxide, and Pt/alumina are shown in 

figure 4.9a. Alumina has almost no uptake of PdTA but there is a broad and notably high 

uptake of PdTA over a pH range from 3 to 11 on pure PtO2. The PdTA uptake graph over 

Pt/A catalyst is similar to the one over pure PtO2. Pt particles in Pt/alumina catalyst are 

assumed to be so small that they spontaneously oxidize in air.  

     In same way, PTA can be adsorbed onto PdO instead of alumina, as shown in figure 

4.9b. Pure PdO has high uptake of PTA in the basic pH range and Pd/alumina catalyst 

also exhibits the typical volcano shape. Alumina shows small but significant uptake of 

PTA but the PZC of alumina is higher than that of PdO (as chapter 3, the PZC of 

PdO·H2O is 4), therefore PTA can has increased electrostatic interaction with the PdO 

surface compared to alumina. 
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b)  

c)  

Figure 4.9 Uptake graph a) PdTA b) PTA c) PHC 

     Figure 4.9c shows an ideal uptake volcano chart of PHC over PdO/silica catalyst 

but no adsorption over silica, suggesting that the Pt anion precursor should be selectively 

adsorbed onto the PdO surface of a Pd/SiO2 catalyst. Curiously, the adsorption trend of 

the PHC suggests that the PZC of the PdO is 7, which was the PZC measured for 

unhydrated PdO; however for commercially available PdO·H2O, the value has been 

measured as 4.0 and that value was consistent with adsorption trend of cations onto PdO 
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in chapter 3.   

     From the adsorption surveys of figure 4.9, the optimal pHs for selective adsorption 

of the shell metal onto the core metal were determined to be 5.0 for PHC adsorption onto 

PdO/silica, 9.8 for  PTA on PdO/alumina, and 10.6 for PdTA on PtO2/alumina. Three 

cycles of seq-SEA were used to increase the loading of the shell metal; the weight 

loadings of these catalysts are summarized in table 4.4. 

 

Table 4.4 Metal wt% of PT/Pd core shell catalysts 

Support Type Pt wt% Pd wt% 

Silica 

1
st
 seq-SEA 0.44 

4 2
ND

 seq-SEA 0.8 

3
RD

 seq-SEA 1.0 

Alumina 

1
st
 seq-SEA 

6 

0.55 

2
nd

 seq-SEA 1.0 

3
rd

  seq-SEA 1.28 

1
st
 seq-SEA 0.1 

2 2
nd

 seq-SEA 0.21 

3
rd

 seq-SEA 0.33 

 

B. XRD 

     Powder XRD patterns of the core/shell catalysts are compared to DI-prepared 

catalysts of the same nominal composition in Figure 4.10. The Pd@Pt (Pt shells on Pd 

cores) on silica patterns are shown in Figure 4.10a. Particles produced by seq-SEA are a 
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single fcc phase and the size has not changed after repeating SEA 3 times; the average 

size was determined to be 2.0 nm. In contrast to seq-SEA, particles by co-DI are larger 

and the crystal patterns reveal a mixture of various phases; PtO2, PdO and Pt/Pd alloy.  

     XRD patterns of the Pt@Pd alumina supported catalysts in figure 4.10b are similar 

to the set of silica catalysts. The 3
rd

 seq-SEA particle size increased to 3.0 nm, compared 

with 1.5nm for the 1
st
 seq-SEA, but only one fcc phase is found. The co-DI catalyst, 

which has the same wt% with the 3
rd

 seq-SEA contains agglomerated alloyed particles 

and Pt oxide. The particle size of the co-DI catalyst is again somewhat small due to the 

CEDI effect, similar to the co-DI catalysts shown in figure 4.5c. 

a)  

10 20 30 40 50 60 70

0

10000

20000

30000

40000

50000

60000

70000

80000

 Silica

 0.44Pt/4Pd 1st SEA

 0.44Pt/4Pd co-DI

 1Pt/4Pd 3rd SEA

 1Pt/4Pd co-DI

In
te

n
si

ty

2 theta



www.manaraa.com

 

79 

 

b)  

c)  

Figure 4.10 XRD patterns of seq-SEA vs co-DI a) Pd@Pt/SiO2 b) Pt@Pd/A c) Pd@Pt/A 

 

     Figure 4.10c shows XRD patterns of the Pd@Pt alumina catalysts. No obvious 

crystal peaks are detected on the seq-SEA samples, implying that average particle sizes 

are less than 2nm. There is a peak near 40
o
 of the co-DI samples, attributable to either Pd 

or Pt(111) or a Pt-Pd alloy.  There is insufficient signal to definitely identify the peak.  
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C. STEM and EDXS 

     STEM and EDXS analysis of the core/shell catalysts and corresponding co-DI 

catalysts of the same composition is given in figure 4.11. The Pd@Pt/silica samples are 

shown in figure 4.11a. High resolution z-contrast images reveal an uneven, relatively 

unstructured layer of Pt atoms (brighter spots) around structured Pd cores. EDXS maps 

support a Pd core@Pt shell structure, as the Pt maps of individual particles are wider than 

the corresponding Pd maps. The particles of 1Pt/4Pd/silica by co-DI in figure 4.11b are 

large, agglomerated and some parts are Pd rich while others are Pt rich, consistent with 

XRD showing a mixture of phases (figure 4.10a).  

     Images and maps of the 1.28Pd/6Pt/alumina catalyst synthesized by seq-SEA are 

shown in figure 4.11c. EDXS maps appear to confirm the existence of partial Pd shells on 

the Pt cores. The average particle size is near 3 nm, the same as XRD analysis (figure 

4.10b). The 1.28Pd/6Pt/alumina by co-DI could not be analyzed by EDXS because high 

numbers of Pt atoms are easily charged by x-ray beams and moved during analysis. The 

Pt particles of seq-SEA catalyst are partially covered by Pd atoms and those particles may 

be more stable under the beam. Average particle size of co-DI on alumina (figure 4.11d) 

is small (less than 2nm) because most of the particles are very small, this may be 

attributed to the CEDI effect, but agglomerated large particle still exist, creating to a 

bimodal particle size distribution. 

     STEM analysis of the 0.33Pt/2Pd/alumina core/shell catalyst by seq-SEA (figure 

4.11e) gave an average particle size of 2 nm, similar to co-DI (figure 4.11f). High 

resolution z-contrast images reveal the presence of Pt atoms on the Pd surface, similar to 

figure 4.11a. EDXS maps also suggest the decoration of Pd cores with Pt atoms. The 
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EDXS map of the co-DI particle also suggests the co-location of Pt and Pd, however 

presence of Pt on the particle surfaces is not as evident in the the high resolution image. 

Catalyst STEM image Mapping of Pt & Pd 

a) 

1Pt/4Pd/ 

silica 

by 

seq-SEA 

 

 

 

b)  

1Pt/4Pd/ 

silica 

by 

co-DI 
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c) 

1.28Pd/6Pt

/alumina 

by 

seq-SEA 

 
 

d) 

1.28Pd/6Pt

/alumina 

by 

co-DI 

 5nm 5nm 



www.manaraa.com

 

83 

 

e) 

0.33Pt/2Pd

/alumina 

by 

seq-SEA 

 

 

f) 

0.33Pt/2Pd

/alumina 

by 

co-DI 

 
 

Figure 4.11 STEM and EDXS of seq-SEA vs co-DI a) 1Pt/4Pd/silica by seq-SEA and b) 

by co-DI, c) 1.28Pd/6Pt/alumina by seq-SEA and d) by co-DI, e) 0.33Pt/2Pd/alumina by 

seq-SEA and f) by co-DI. 

 

D. Catalytic Activity : Oxidation of Diesel Exhaust 

     USC’s collaboration with Johnson Matthey will involve the future evaluation of a 

number of the co-SEA, seq-SEA, and co-DI Pt/Pd catalysts synthesized to date. A 

preliminary look at JM’s evaluation has been obtained by their testing of two catalysts; 

2nm 
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the 1wt%Pt/4Pd/SiO2 Pd@Pt core/shell catalyst synthesized by three SEA cycles, and the 

co-DI catalyst with identical metal loadings. The light-off curves for CO, total 

hydrocarbons (THCs), and NO conversion for these two catalysts are shown in figure 

4.12 as a function of aging conditions.  

a)  

b)  
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c)  

Figure 4.12 Catalytic Activity for DOC a) CO b) THC and c) NO. 

     Figure 4.12a shows that the activity of the fresh seq-SEA catalyst was much higher 

than that for the co-DI catalyst, having a light-off temperature of 179°C compared to 

267°C for the co-DI catalyst. After aging at 500°C for 2hrs, however, the light-off curve 

of the seq-SEA catalyst moves to higher temperature, and the co-DI moves down to lower 

temperatures. After aging at 750°C for 10hrs, the CO light-off curves virtually overlap. It 

is clear that silica does not anchor the nanoparticles at even the milder calcination 

temperature and the higher temperature treatments are sufficient to achieve equilibrium 

particle size and composition. (Post reaction samples will be returned to USC for future 

characterization.) Alumina supported catalysts may exhibit better stability. 

     Trends in the THC light-off temperature, seen in figure 4.12b, are similar. The THC 

light-off temperature of seq-SEA is initially 192°C, whereas co-DI is 302°C. But after 

thermal treatments, the THC light-off temperature of the seq-SEA sample increases and 

that of the co-DI sample decreases, such that after the 750°C, 10 h treatment the co-DI 
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light-off temperature is actually lower than the seq-SEA sample. The same trends are also 

seen in NO conversion, which is not expected to be high as the feed stream contains a 

great excess of oxygen. The light-off curve for the co-DI, 500°C 2 h treatment appears to 

be spurious. 

     It cannot presently be ascertained to what extent the large difference in initial 

activity is due to metal dispersion on the one hand, or intimate Pt-Pd contact on the other. 

A comparison of the seq-SEA sample with a control catalyst featuring a physical mixture 

of two SEA-prepared, well dispersed single metal catalysts, with nearly identical overall 

metal active area, will enable this effect to be isolated. The deactivation of the seq-SEA 

catalyst may primarily be sintering, and the activation of the co-DI catalyst may be 

wetting. Post-reaction characterization by XRD and STEM will help answer these 

questions.   

     The entire set of catalysts synthesized for evaluation at JM is listed in table 4.5.  

Samples number 5 and 6 were those already tested. Only oxide supports have been used 

as carbon would be unstable in this reaction. Silica supported  bimetallic catalysts have 

been prepared with co-SEA for homogeneous alloys, and by seq-SEA with Pt shells on 

Pd cores, with 1 and 3 SEA cycles of Pt shell application. As controls, co-DI samples at 

the same nominal compositions have been prepared, and a physical mixture of SEA-

prepared single metals with high single metal dispersion will be used to eliminate the 

difference in metal dispersion and isolate the effect of intimate Pd-Pt contact in the co-

SEA and seq-SEA samples. For alumina, the same variety of sample is prepared, with 

either Pt shells and Pd cores, or Pd shells and Pt cores. 
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Table 4.5 The list of catalysts that are being evaluated at JMTC for DOC evaluation. 

  Catalyst 
Pt 

wt% 

Pd 

wt% 
Type Method 

1 0.44 Pt/ 4.0 Pd by seq-SEA 0.44 4 Pd@Pt 1st seq-SEA 

2 0.44 Pt/ 4.0 Pd by co-DI 0.44 4 Alloy co-DI 

3 0.44 Pt/ 4.0 Pd by PM-SEA 0.44 4 Pd + Pt PM(SEA+ SEA) 

4 0.56 Pt/ 3.2 Pd by co-SEA 0.56 3.2 Alloy co-SEA 

5 1.0 Pt/ 4.0 Pd by seq-SEA 1 4 Pd@Pt 3rd seq-SEA 

6 1.0 Pt/ 4.0 Pd by co-DI 1 4 Alloy co-DI 

7 1.0 Pt/ 4.0 Pd by PM-SEA 1 4 Pd + Pt PM(SEA+ SEA) 

8 4.5 Pt/ 2.0 Pd by co-SEA 4.5 2 Alloy co-SEA 

9 4.5 Pt/ 2.0 Pd by co-DI 4.5 2 Alloy co-DI 

10 4.5 Pt/ 2.0 Pd by PM-SEA 4.5 2 Pd + Pt PM(SEA+ SEA) 

11 0.55 Pd/ 6.0 Pt by seq-SEA 6 0.55 Pt@Pd 1st seq-SEA 

12 0.55 Pd/ 6.0 Pt by co-DI 6 0.55 Alloy co-DI 

13 0.55 Pd/ 6.0 Pt  by PM-SEA 6 0.55 Pd + Pt PM(SEA+ SEA) 

14 1.28 Pd/ 6.0 Pt by seq-SEA 6 1.28 Pt@Pd 3rd seq-SEA 

15 1.28 Pd/ 6.0 Pt by co-DI 6 1.28 Alloy co-DI 

16 1.28 Pd/ 6.0 Pt by PM-SEA 6 1.28 Pd + Pt PM(SEA+ SEA) 

17 1.58 Pd/ 5.3 Pt by co-SEA 5.3 1.58 Alloy co-SEA 

18 0.11 Pt/ 2.0 Pd by seq-SEA 0.11 2.0 Pd@Pt 1st seq-SEA 

19 0.11 Pt/ 2.0 Pd by co-DI 0.11 2.0 Alloy co-DI 

20 0.11 Pt/ 2.0 Pd by PM-SEA 0.11 2.0 Pd + Pt PM(SEA+ SEA) 

21 0.33 Pt/ 2.0 Pd by seq-SEA 0.33 2.0 Pd@Pt 3rd seq-SEA 

22 0.33 Pt/ 2.0 Pd by co-DI 0.33 2.0 Alloy co-DI 

23 0.33 Pt/ 2.0 Pd by PM-SEA 0.33 2.0 Pd + Pt PM(SEA+ SEA) 

 

4.3 CONCLUSIONS 

     Three preparations of bimetallic catalysts, co-SEA, seq-SEA and co-DI, were 

demonstrated with Pd and Pt precursors on silica, alumina, and carbon support.  co-SEA 

yields well dispersed homogeneous Pt-Pd alloy particles, while co-DI gives large, 

agglomerated, inhomogeneous particles, which can be improved somewhat if the 
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precursor solution is highly acidic or basic to produce the CEDI effect. With seq-SEA, 

core@shell structures can be prepared by selectively adsorbing a second metal onto a first 

metal oxide. Shell metal loading can be increased by additional cycles of SEA, which 

gives some flexibility at catalyst composition in exchange for more synthesis steps.   

     An initial assessment of catalytic activity for diesel exhaust oxidation showed 

much higher initial activity of seq-SEA catalysts than for co-DI catalysts, but the highly 

dispersed SEA-derived materials appeared to sinter quickly on the silica support. Future 

studies with other supports and other core/shell and homogeneously alloyed 

morphologies will enable a better correlation of rational synthesis to structure and 

function.  



www.manaraa.com

 

89 

 

CHAPTER 5 

CARBON SUPPORTED Au-Pd BIMETALLIC CATALYSTS  

FOR BENZYL ALCOHOL OXIDATION 

 

Combinations of noble metals such as Au and Pd in bimetallic catalysts have important 

applications such as the selective oxidation of alcohols, the carbonyl products of which 

serve as important and versatile intermediates for the synthesis of fine chemicals [68]. 

There are many studies of aerobic catalytic oxidation for the formation of alcohols into 

carbonyl compound utilizing one or both of these metals [68-76]. Until very recently, 

most of the attention for oxidation of alcohols to carbonyl compounds focused on 

supported Pd catalys [68,70,77,78]. Gold has also been shown to be an effective catalyst 

for the selective oxidation of alkenes and alcohols [71,79]. Gold promoted bimetallic 

catalysts have significant influence on selectivity. Chen and co-workers reported that the 

role of Au is to isolate single Pd sites that facilitate the coupling of critical surface species 

to product, while inhibiting the formation of undesirable reaction by-product [80]. A 

combination of Pd with Au promotes both the activity and selectivity for the benzyl 

alcohol oxidation [81-83]. Au-Pd bimetallic catalyst supported by activated carbon not 

only improved catalytic activity and selectivity to the benzaldehyde, but also enhanced 

the resistance to poisoning [83].  

     In spite of the intricate interactions believed necessary of the two metals, the 

synthesis of Au/Pd nanoparticles is far from optimized. Supported Au-Pd catalysts are 

most often prepared by co-impregnation (referred to here as co-dry impregnation or co-
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DI) and precipitation [72,82,84-91] In co-DI, both metals are added to the amount of 

solution just necessary to fill the pore volume of the support. Precipitation is effected by 

adding base (NaOH) to adjust pH to 9 in a slurry of the two acidic precursors and support. 

These preparation methods make no or relatively little provision for 1) high metal 

dispersion which imparts high activity per mass of metal or 2) metal-metal interactions, 

which produce high selectivity. More precise control of size and composition of Au-Pd 

nanoparticles can be achieved by colloidal techniques [69,72,73,83,84], but this 

methodology is relatively complex, leads to problems of removing the organic scaffold, 

and is difficult to scale [92]. 

     In this chapter we demonstrate a simple, rational, repeatable, scalable seq-SEA to 

synthesize Au-Pd bimetallic nanoparticles of very high dispersion and with more intimate 

interactions between the two metals. seq-SEA steps for supported bimetallic Au-Pd 

nanoparticle synthesis is illustrated in figure 5.1. First, Pd anionic precursor adsorbed on 

protonated carbon surface by SEA and after reduced and calcined, well dispersed PdO 

particles are over carbon surface. At optimal pH, PdO surface is negatively charged when 

the carbon surface is positively charged because of the PZC differences between PdO and 

carbon. The surrounding protonated carbon support gives the ability to selectively adsorb 

gold cations onto the deprotonated PdO particles, and not on the carbon.  

     In this way we have improved the benzyl alcohol oxidation activity of a 

2.5wt%Au/2.5wt%Pd/carbon (referred to hereafter as 2.5Au/2.5Pd/C) catalyst prepared 

by co-DI by a factor of ten, using 25 times less Au. 
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Figure 5.1 Schematic of seq-SEA. (A) At optimal pH, the core metal oxide (PdO) is 

negatively charged and support carbon is positively charged. (B) Au cation precursor is 

adsorbed on the negatively charged PdO surface with a hydration sheath. (C) After 

reduction with H2, Au is reduced as a partial shell over reduced Pd core. 

 

5.1 EXPERIMENTS 

5.1.1 Materials 

     The carbon support was Darco G-60 (C, surface area: 738m
2
/g, PZC: 8). Palladium 

tetrachloride (PdTC, [PdCl4]
-2

) and Gold biethylenediamine (AuBen; [Au(en)2]
+3

) were 

used as metal precursors. Also, pure palladium oxide was purchased from Fluka, Inc. 

5.1.2 Catalysts Preparation  

     2.5Pd/C was synthesized first by SEA to prepare nanoparticles of the core Pd. After 

reduction, the ultrasmall Pd particles oxidized upon exposure to air. Two loadings of gold 

(0.1 and 0.5Au) were applied to the PdO nanoparticles by a second SEA application 

which we term sequential SEA (seq-SEA). At high pH, the high PZC carbon will adsorb 
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less cations than PdO which has the lower PZC as chapter 3, so that in principle, gold 

cations of AuBen can be selectively adsorbed onto the PdO nanoparticles. Core-shell 

Pd@Au morphologies will result after the Au precursors on the Pd oxide nanoparticles 

are reduced. For comparison with past literature reports, another catalyst with the 

commonly employed loadings of 2.5Au and 2.5Pd [85,86,88-91] was prepared by co-DI. 

Others at 0.1 and 0.5Au were prepared by DI of the gold onto the well dispersed, SEA-

prepared 2.5Pd/C. All catalysts were reduced at 150 °C as determined by temperature 

programmed reduction.  

5.1.3 Catalysts Characterization  

A. XRD  

Powder XRD measurements were made using a Rigaku MiniFlexII bench-top 

system. XRD patterns were compared to reference spectra using PDXL (Rigaku 

Corporation) software. The radiation source was Cu Kα radiation (λ = 1.5406 Å) at 

operating condition of 30kV and 15mA. All spectra were taken at a scan rate of 0.5
o
/min 

and sampling width of 0.02
 o
. 

B. CO chemisorptions 

10% Carbon monoxide (balanced He) chemisorptions was used to determine the 

accessible Pt surface (Micromeritics ASAP 2920) at 40°C. The samples were first dried at 

150 °C in a He flow for 1 h and subsequently reduced in a H2 flow at 150 °C for 1 h 

(ramp = 10°C/min). 

C. STEM and EDXS 

     The microscope used in this study was a TITAN 80-300 with ChemiSTEM 

Technology (FEI Company; Hillsboro, USA). It was equipped with a CEOS GmbH 
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(Heidelberg, Germany) CESCOR spherical aberration probe corrector capable of 

generating a sub-Ångstrom electron probe (0.8 Å) at an accelerating voltage of 200 keV.  

The ChemiSTEM system comprises a design that includes a high-brightness emission 

source (X-FEG Schottky) for enhanced beam current, and the integration of four, 

windowless(30 mm
2
) FEI-designed silicon drift detector(s) (SDD) into the objective lens 

for a total collection area and solid angle of 120 mm
2
 and 0.7 sr, respectively, for 

enhanced detectability.  

     Particle chemistry was determined by using centering the probe on individual 

particles and collecting the X-rays for a period no longer than 30 sec. For larger 

crystallites areal scans were collected to encompass the signals generated by the entire 

particle. Chemical maps were collected over selected regions of interest comprised of 

multiple particles. Collection times varied between 10 – 20 minutes with a dwell time set 

at 8 µs/pixel and cut off energy slit of 20 keV. 

     Prior to STEM imaging each sample was reduced under hydrogen flow at 150 
o
C 

for 1 hour and then exposed to air for 48 hours to ensure a skin of PdO would form over a 

metallic Pd core and removal of any residual ligands. The bimetallic Au-Pd catalysts 

were reduced at 100
o
C for 1 hour at a ramp rate of 0.5

o
C/min.  

D. Reactivity Test (Benzyl Alcohol Oxidation) 

     Dr. Hutching’s group (Cardiff University, UK) tested all the catalysts for benzyl 

alcohol oxidation with a 100ml scale batch reactor(Autoclave Engineers Inline 

MagneDrive lll). The vessel was charged with benzyl alcohol 40ml and 25mg of catalysts. 

The pressure was maintained 10bar of O2, the temperature was 140°C via a sampling pipe, 

ensuring that the volume purged before sampling was higher than the tube volume, and 
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the analyzed by GC using a DB-Wax column.  

5.2 RESULT AND DISCUSSION 

5.2.1 Uptake Survey and Selective Adsorption 

     In figure 5.2a, the uptake curve exhibits the volcano shape expected of electrostatic 

adsorption [20], with uptake increasing as pH is lowered from the carbon’s PZC, (8.5),  

a)  

b)  

Figure 5.2 Metal uptake surveys, a) PdTC on Darko G60 carbon, b) AuBen on ca

rbon, PdO, and PdO/carbon 

but then decreasing at the lowest pH range as ionic strength increases.  
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The pH of the strongest electrostatic interaction occurs at a pH of 2.0, (initial pH 2.0) at 

which condition a large quantity of catalyst was synthesized by simply scaling up the 

volume. The uptakes of across pH range of 2-13 were measured over the G60 carbon 

support, over pure PdO, and over PdO/G-60 (figure 5.2b). The uptake of the Au cation 

onto carbon is relatively low. This data is consistent with earlier data for Pt cation uptake 

on high PZC carbon [20]; the high PZC carbon materials do not possess the functional 

groups which accrue a significant negative charge at high pH and so do not strongly 

adsorb cations. We have measured the PZC of PdO to be 4 in chapter 3, and the uptake of 

the AuBen cation onto it exhibits a high pH volcano with a maximum at a pH of about 

10.5. The fraction of the PdO in the PdO/carbon material is small such that the increased 

Au uptake on the PdO/carbon is small, except at pH 13, where it appears the adsorption 

of Au is most selective. Consequently, this pH 10.5 was used for the subsequent synthesis 

of larger amounts of catalyst. 

5.2.2 Catalysts Characterization 

A. XRD 
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 Figure 5.3  X-ray Diffraction patterns of (A) Carbon support, (B) 2.5Pd/C by SEA, (C) 

0.5Au/2.5Pd/C and (D) 0.1Au/2.5Pd/C by seq-SEA (E) 2.5Au/2.5Pd/C by co-DI. 

 

     An initial measure of the synthesis effectiveness was provided by powder XRD, 

the results of which are given in figure 5.4. The pure carbon black support exhibits 

characteristic graphitic peaks. In no XRD pattern of the SEA prepared samples, including 

the Au-free, 2.5Pd/C and the 0.1 and 0.5Au on 2.5Pd/C, were any crystalline peaks for 

the metals observed. The limit of detection of this XRD instrument which features a 

newest-generation, high sensitivity silicon slit detector is close to 1 nm. In contrast, for 

the 2.5Au/2.5Pd/C co-DI sample sharp peaks of fcc Au were seen. The particle size of 

this Au or Au-rich phase calculated from the Scherrer equations is about 220 Å. No 

separate Pd-rich phase was detected by XRD for the co-DI preparation.  

B. STEM and EDXS 

     A much more refined characterization of particle size and individual nanoparticle 
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composition was achieved by STEM. From Z-contrast images of the 2.5Pd/C material 

(representative image in figure 5.4a), the average particle size is 7.7 Å.  

 

 

 

 

 

      a)                           b)  

 

 

 

 

      c)                           d)   

 

Figure 5.4 STEM images of a) 2.5Pd/C by SEA, b) 0.1Au/2.5Pd/C and c) 0.5Au/2.5Pd/C 

by seq-SEA, and d) 2.5Au/2.5Pd/C by co-DI. 

 

Analysis of the 0.1 and 0.5Au on Pd/C by seq-SEA (representative images in figure 5.4b 

and c), showed that the average particles size increased slightly to 8.2 and 8.4 Å 

respectively. These small sizes explain the lack of detection by XRD. Particles are not 

only uniform in size but are also well-distributed over the carbon support. In contrast, the 

metal particles prepared by co-DI (figure 5.4d) have much larger size, with much broader 

size distributions, and are much less homogeneously distributed on the surface than the 

SEA-prepared samples. The STEM estimate of average particle size is 480Å, about twice 
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that of the XRD estimate. Differences between the experimental results can be explained 

by the sampling where STEM is only able to evaluate a small portion of the sample while 

XRD is a bulk analytical technique. Consequently, number of particles examined with 

STEM imaging may not be representative of the overall sample, particularly when the 

sample has heterogeneity 

     Imaging and high resolution elemental mapping with energy dispersive x-ray (EDX) 

spectroscopy are shown in figure 5.5. Representative chemical maps of Au on C (5.5b) 

and  Pd on C (5.5c) of the region imaged in figure 5.5a. This sample was prepared by 

seq-SEA with metal loadings of 0.1Au and 2.5Pd. Comparison of Figure 5.5a with the Pd 

and C chemical map in figure 5.5c, for example, shows a clear correlation between Pd 

particles and Pd X-ray signals. Limited co-location of Au with Pd is seen by comparing 

the chemical maps in figure 5.5b and c. This could be either because the amount of Au on 

particles is below detection limits (< 2-3 atoms) or because there are no Au adatoms 

present.  

     The composition of individual nanoparticles in both the seq-SEA prepared 

0.1Au/2.5Pd and 0.5Au/2.5Pd series was determined and plotted as a function of particle 

size in figure 5.5f. The particle size given in this plot and also in figure 5.5g are classified 

approximate due to the use of a defocused probe during chemical analysis, limiting 

resolution to ~1.4 Å. Figure 5.5f reveals a correlation between composition and particle 

size. While some smaller Pd particles appear to have no detectable Au, larger particles 

contain proportionately more.  

     A representative image of the 2.5Au/2.5Pd co-DI-prepared catalyst is shown in 

figure 5.5d. The high intensity Au core (ZAu = 197) is coated by a low intensity Pd shell 
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(ZPd = 106), consistent with other characterization of Au/Pd bimetallic nanoparticles 

prepared by co-DI [85,87,88,91]. Moiré fringes arise from the small differences in the Au 

and Pd lattices. Chemical maps and linescans across the particles (Figure 5.5e) also 

reveal the Pd shell-Au core morphology. Individual particle compositions plotted versus 

size (Figure 5.5g) reveal the presence of some very small, Au-free Pd particles, but 

mainly very large Au rich particles with Pd shells. 

     It is surmised from this analysis that the co-DI sample exhibits mainly a Pd 

catalytic surface, a large fraction of which is supported on large Au particles. The Pd shell 

may be thin enough to be electronically effected by the underlying gold. The seq-SEA 

nanoparticles appear to feature Au moieties on the Pd surface to a much higher degree 

than the co-DI sample. It might be anticipated that Au atoms or clusters deposited on the 

Pd surface will have dramatically different effects on catalytic kinetics, than the 

underlying core of Au present in the DI-prepared samples. 
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Figure 5.5 (A to C) Chemical mapping of 0.1Au/2.5Pd/C by seq-SEA. (A) shows STEM 

image, (B) and (C) indicate carbon to red, yellow to Au and blue to Pd. (D and E) STEM 
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image of core-shell particle (D) and chemical mapping and line scanning (E) of 

2.5Au/2.5Pd/C by co-DI. (F and G) The graphs of mole % of Au vs size of particles. (F) 

shows the particles which are produced by seq-SEA, (G) by co-DI. 

 

C. Particle size analysis 

     As summarized in Table 5.1, particle size based on STEM analysis agrees with 

XRD result with every catalyst. 

 

Table 5.1 Particle size analysis 

 

Samples 

Number of 

Particles 

Examined 

by STEM 

Mean Size 

by STEM 

(Å) 

Mean size 

by XRD 

(Å) 

Dispersion 

(CO 

Uptake) 

(%) 

Mean Size 

by CO-

Chemi-

sorption 

(Å) 

0.1Au-2.5Pd/C 3706 8.2±4.0 < 20 33 30 

0.5Au-2.5Pd/C 3354 8.4±3.7 <20 24 42 

2.5Pd/C 3629 7.7±2.4 <20 35 29 

2.5Au-2.5Pd/C 158 480±470 220 28 36 

 

However, carbon monoxide chemisorption data is not matched with the other analysis 

data. Based on STEM and XRD, co-DI catalyst should have lower dispersion (2~4%) 

than actual (28%). The reason cab be explained with Figure 5.5d and e. Although the Au-

Pd particle size is large, CO dispersion was better than expected because Pd exists in the 

form of a thin shell over the Au core. The X-ray diffraction pattern of co-DI (figure 5.3e) 

can also be explained because the Pd layer may be too thin to be detected, compared with 

the large size of Au crystals. Core-shell particles may form during calcination of the co-

DI catalyst [17]. Pd may be segregated at the particle surface to become PdO during the 

calcination but Au is easily agglomerated with high temperature. 

     The Pd-only catalyst also has a same discrepancy with CO chemisorption. The 
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dispersion should be 100% based on the STEM and XRD analysis but the measured 

dispersion by CO chemisorption was 35%. Krishnankutty and Vannice suggest that it 

may be more facile for carbon can migrate onto and into the Pd crystallites during the 

higher temperature reduction or evaluation periods when Pd is in contact with a clean, 

highly disordered carbon surface [93]. Their Pd/C catalysts also had lower calculated 

dispersion by both H2, O2 titration and CO chemisorption than the dispersion by STEM 

since the surface of Pd particles are partially or fully covered by carbon. The 

chemisorption discrepancy notwithstanding, the trend in uptake by CO is relatively lower 

after Au is added by seq-SEA because Au partially covers the Pd surface. This suggests 

that the second metal (Au) adsorbed onto the surface of the first metal (Pd) by SEA, and 

not on carbon. 

D. Benzyl alcohol Oxidation 

 

Figure 5.6 Benzyl alcohol conversion (%) with the reaction time at 140°C and 10bar pO2. 

 

     Catalytic activity for benzyl alcohol oxidation is shown in Figure 5.6. As a 
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benchmark, the catalyst commonly prepared by co-DI with 2.5Au/2.5Pd is seen to have 

the lowest activity of all samples. The Pd-only SEA-prepared catalyst with 8 Å particles 

is about 6 times as active as the benchmark; thus a great improvement in activity is 

brought about simply by dispersing the Pd to a high extent. The seq-SEA prepared 

0.1Au/2.5Pd catalyst has at least ten times higher activity (comparing conversions at 0.5 

h) than the benchmark, with 25 times less the amount of Au. With the electrostatic 

deposition of more Au, (0.5Au/2.5Pd) the activity diminished to about the level of the Pd-

only catalyst. The lower activity of the higher Au loading can be explained by increasing 

Au blockage of the Pd surface, whereas the promotion of Pd by the lower Au loading 

might be explained by an electronic effect in which the surface Au atoms reduce oxygen 

poisoning over the Pd surface [83]. Geometric effects relating to the balance of 

adsorption and -H elimination over terrace and edge/corner sites [82] is less likely as the 

ultrasmall particles (8 Å, or clusters of about 20 atoms) do not possess an appreciable 

fraction of terrace sites. 

     Curiously, when we added 0.1Au by DI to the 2.5Pd catalyst synthesized by SEA, 

the activity fell far below the Pd-only SEA-prepared catalyst. It was subsequently found 

by XRD analysis (figure 5.7) that the DI procedure used for adding the Au caused the Pd 

phase to sinter - peaks of sintered Pd (particle size about 15 nm) were seen in XRD. A 

further control experiment with a metal-free HCl solution suggested that this is likely due 

to the acidity of the tetrachloroautate acid DI solution, into which Pd likely redissolved as 

Pd(II) choride and redeposited without support interaction. The presence of residual 

chloride could also diminish activity. 

     The selectivity of the catalysts to various products is given in Table 5.2. As 



www.manaraa.com

 

104 

 

expected the main product formed is the aldehyde as this is the primary product. 

However as the reaction time increases for the SEA-prepared catalysts the selectivity to 

benzoic acid, the sequential oxidation product, is enhanced. This is not observed for the 

catalyst prepared by impregnation and shows the higher oxidation activity of the smaller 

nanoparticles produced by this method. Toluene is formed by a transfer  
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Figure 5.7. X-ray Diffraction patterns of 0.1wt% Au DI catalysts. Au and Pd (111) peaks 

are indicated. 

 

hydrogenation process and this is not particularly affected by the preparation method. The 

catalysis results indicate the conversion activity enhancement is the main advantage of 

the SEA method. 

 

 

 

 

 

Au Pd rich phase 
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Table 5.2 Selectivity table 

 

 

 Selectivity (%) 

 

 
Benzaldehyde 

 

 
Benzoic Acid 

 

 
Toluene 

Time (hour)  0.5 1 1.5  0.5 1 1.5  0.5 1 1.5 

0.1 % Au-2.5 % Pd/C  66 59 45  2 15 31  30 24 21 

0.5 % Au-2.5 % Pd/C  72 64 48  1 14 34  25 19 16 

2.5 % Pd/C  75 69 57  2 11 27  21 18 13 

2.5 % Au-2.5 % Pd/C  77 71 70  3 3 5  20 24 23 

 

5.3 CONCLUSION 

     Sequential SEA is a simple method involving control of solution pH to achieve 

well dispersed core metal particles followed by selective adsorption of a second metal 

onto the first metal oxide. The approach is inherently applicable to commercially viable, 

high surface area support materials. The rational synthesis of bimetallic metal particles by 

sequential strong electrostatic adsorption can dramatically improve catalyst reactivity; in 

this case, raising activity of Pd/Au/C for benzyl alcohol oxidation by more than a factor 

of ten with 25 times less gold. Intimate contact of metals also results in more effective 

utilization of the metals, which is critical for expensive noble metals such as gold and 

palladium. 
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